Year 2023,
, 89 - 105, 31.03.2023
Mahmoud Sheta
,
Ahmed Elwardany
,
Shinichi Ookawara
,
Hamdy Hassan
References
- [1] Baniasad Askari, I, Ameri, M. A techno-economic review of multi effect desalination systems integrated with different solar thermal sources. Applied Thermal Engineering 2021; 185: 116323, DOI: 10.1016/j.applthermaleng.2020.116323
- [2] Yousef, MS, Hassan, H. Energy payback time, exergoeconomic and enviroeconomic analyses of using thermal energy storage system with a solar desalination system: An experimental study. Journal of Cleaner Production 2020; 270: 122082, DOI: 10.1016/j.jclepro.2020.122082
- [3] Bataineh, KM. Multi-effect desalination plant combined with thermal compressor driven by steam generated by solar energy. Desalination 2016; 385: 39–52, DOI: 10.1016/j.desal.2016.02.011
- [4] Shabgard, H, Xu, B, Parthasarathy, R. Solar thermal-driven multiple-effect thermosyphon distillation system for waste water treatment. In: Proceedings of ASME International Mechanical Engineering Congress and Exposition (IMECE), 3-9 November 2017: ASME, pp. 1–7.
- [5] Alhaj, M, Mabrouk, A, Al-Ghamdi, SG. Energy efficient multi-effect distillation powered by a solar linear Fresnel collector. Energy Conversion and Management 2018; 171: 576–586, DOI: 10.1016/j.enconman.2018.05.082
- [6] Uğurlu, A, Gokcol, C. An overview of Turkey’s renewable energy trend. Journal of Energy Systems 2017; 1: 148–158, DOI: 10.30521/jes.361920
- [7] Kim, YD, Thu, K, Myat, A, Ng, KC. Numerical simulation of solar-assisted multi-effect distillation (SMED) desalination systems. Desalination and Water Treatment 2013; 51: 1242–1253, DOI: 10.1080/19443994.2012.695044
- [8] Liu, X, Chen, W, Gu, M, Shen, S, Cao, G. Thermal and economic analyses of solar desalination system with evacuated tube collectors. Solar Energy 2013; 93: 144–150, DOI: 10.1016/j.solener.2013.03.009
- [9] Calise, F, Dentice d’Accadia, M, Piacentino, A. A novel solar trigeneration system integrating PVT (photovoltaic/thermal collectors) and SW (seawater) desalination: Dynamic simulation and economic assessment. Energy 2014; 67: 129–148, DOI: 10.1016/j.energy.2013.12.060
- [10] Zhang, Z, Hu, Z, Xu, H, Dai, X, Wang, J, Jiao, W, Yuan, Y, Phelan, P. Theoretical analysis of a solar-powered multi-effect distillation integrated with concentrating photovoltaic/thermal system. Desalination 2019; 468: 114074, DOI: 10.1016/j.desal.2019.114074
- [11] Alsehli, M, Alzahrani, M, Choi, JK. A novel design for solar integrated multi-effect distillation driven by sensible heat and alternate storage tanks. Desalination 2019; 468: 114061, DOI: 10.1016/j.desal.2019.07.001
- [12] Masoud Parsa, S, Majidniya, M, Alawee, WH, Dhahad, HA, Muhammad Ali, H, Afrand, M, Amidpour, M. Thermodynamic, economic, and sensitivity analysis of salt gradient solar pond (SGSP) integrated with a low-temperature multi effect desalination (MED): Case study, Iran. Sustainable Energy Technologies and Assessments 2021; 47: 101478, DOI: 10.1016/j.seta.2021.101478
- [13] Soliman, AM, Mabrouk, A, Eldean, MAS, Fath, HES. Techno-economic analysis of the impact of working fluids on the concentrated solar power combined with multi-effect distillation (Csp-med). Desalination and Water Treatment 2021; 210: 1–21, DOI: 10.5004/dwt.2021.26566
- [14] Naminezhad, A, Mehregan, M. Energy and exergy analyses of a hybrid system integrating solar-driven organic Rankine cycle, multi-effect distillation, and reverse osmosis desalination systems. Renewable Energy 2022; 185: 888–903, DOI: 10.1016/j.renene.2021.12.076
- [15] Karaca, G, Dolgun, EC, Kosan, M, Aktas, M. Photovoltaic-Thermal solar energy system design for dairy industry. Journal of Energy Systems 2019; 3: 86–95, DOI: 10.30521/jes.565174
- [16] Ortega-Delgado, B, García-Rodríguez, L, Alarcón-Padilla, DC. Opportunities of improvement of the MED seawater desalination process by pretreatments allowing high-temperature operation. Desalination and Water Treatment 2017; 97: 94–108, DOI: 10.5004/dwt.2017.21679
- [17] Sharqawy, MH, Lienhard V, JH, Zubair, SM. Thermophysical properties of seawater: A review of existing correlations and data. Desalination and Water Treatment 2010; 16: 354–380, DOI: 10.5004/dwt.2010.1079
- [18] Nayar, KG, Sharqawy, MH, Banchik, LD, Lienhard, JH. Thermophysical properties of seawater: A review and new correlations that include pressure dependence. Desalination 2016; 390: 1–24, DOI: 10.1016/j.desal.2016.02.024
- [19] El-Dessouky, H, Ettouney, H. Fundamentals of Salt Water Desalination. Amsterdam, NETHERLANDS: Elsevier 2002.
- [20] El-Dessouky, H, Alatiqi, I, Bingulac, S, Ettouney, H. Steady-state analysis of the multiple effect evaporation desalination process. Chemical Engineering and Technology 1998; 21: 437–451, DOI: 10.1002/(SICI)1521-4125(199805)21:5<437::AID-CEAT437>3.0.CO;2-D
- [21] Nafey, AS, Fath, HES, Mabrouk, AA. Thermoeconomic design of a multi-effect evaporation mechanical vapor compression (MEE-MVC) desalination process. Desalination 2008; 230: 1–15, DOI: 10.1016/j.desal.2007.08.021
- [22] Elsayed, ML, Mesalhy, O, Mohammed, RH, Chow, LC. Performance modeling of MED-MVC systems: Exergy-economic analysis. Energy 2019; 166: 552–568, DOI: 10.1016/j.energy.2018.10.080
- [23] Shahzad, MW, Thu, K, Kim, Y deuk, Ng, KC. An experimental investigation on MEDAD hybrid desalination cycle. Applied Energy 2015; 148: 273–281, DOI: 10.1016/j.apenergy.2015.03.062
- [24] Buonomano, A, Calise, F, Palombo, A. Solar heating and cooling systems by absorption and adsorption chillers driven by stationary and concentrating photovoltaic/thermal solar collectors: Modelling and simulation. Renewable and Sustainable Energy Reviews 2018; 82: 1874–1908, DOI: 10.1016/j.rser.2017.10.059
- [25] Soliman, AMA, Hassan, H, Ookawara, S. An experimental study of the performance of the solar cell with heat sink cooling system. Energy Procedia 2019; 162: 127–135, DOI: 10.1016/j.egypro.2019.04.014
- [26] Gad, R, Mahmoud, H, Ookawara, S, Hassan, H. Energy, exergy, and economic assessment of thermal regulation of PV panel using hybrid heat pipe-phase change material cooling system. Journal of Cleaner Production 2022; 364: 132489, DOI: 10.1016/j.jclepro.2022.132489
Energy analysis of a small-scale multi-effect distillation system powered by photovoltaic and thermal collectors
Year 2023,
, 89 - 105, 31.03.2023
Mahmoud Sheta
,
Ahmed Elwardany
,
Shinichi Ookawara
,
Hamdy Hassan
Abstract
Powering thermal desalination technologies by renewable energy is believed to be a viable solution to overcome the worldwide freshwater scarcity problem without causing more damage to the environment. In this paper, a multi-effect distillation system (MED) with mechanical vapor compression is powered by the generated electrical power of photovoltaic/thermal collectors and assisted by the by-product thermal power generated. The system is sized according to thermal power needed and designed for small-scale application and weather conditions of Alexandria, Egypt. Excess electricity is injected into the grid and hot water storage tank is used as a back-up to compensate low and fluctuating radiation. Results show that, at a saturation temperature of MED’s heating steam of 55 °C, freshwater production is 11.1 m3/day in 10 hours of operation, system specific power consumption is 9.72 kWh/m3, specific area is 317.04 m2s/kg, and performance ratios of the desalination unit is 3.33 and 6.97 for the overall system. However, at T = 65 °C the system’s electrical energy is totally absorbed by the compressor, and the system’s performance decreases.
References
- [1] Baniasad Askari, I, Ameri, M. A techno-economic review of multi effect desalination systems integrated with different solar thermal sources. Applied Thermal Engineering 2021; 185: 116323, DOI: 10.1016/j.applthermaleng.2020.116323
- [2] Yousef, MS, Hassan, H. Energy payback time, exergoeconomic and enviroeconomic analyses of using thermal energy storage system with a solar desalination system: An experimental study. Journal of Cleaner Production 2020; 270: 122082, DOI: 10.1016/j.jclepro.2020.122082
- [3] Bataineh, KM. Multi-effect desalination plant combined with thermal compressor driven by steam generated by solar energy. Desalination 2016; 385: 39–52, DOI: 10.1016/j.desal.2016.02.011
- [4] Shabgard, H, Xu, B, Parthasarathy, R. Solar thermal-driven multiple-effect thermosyphon distillation system for waste water treatment. In: Proceedings of ASME International Mechanical Engineering Congress and Exposition (IMECE), 3-9 November 2017: ASME, pp. 1–7.
- [5] Alhaj, M, Mabrouk, A, Al-Ghamdi, SG. Energy efficient multi-effect distillation powered by a solar linear Fresnel collector. Energy Conversion and Management 2018; 171: 576–586, DOI: 10.1016/j.enconman.2018.05.082
- [6] Uğurlu, A, Gokcol, C. An overview of Turkey’s renewable energy trend. Journal of Energy Systems 2017; 1: 148–158, DOI: 10.30521/jes.361920
- [7] Kim, YD, Thu, K, Myat, A, Ng, KC. Numerical simulation of solar-assisted multi-effect distillation (SMED) desalination systems. Desalination and Water Treatment 2013; 51: 1242–1253, DOI: 10.1080/19443994.2012.695044
- [8] Liu, X, Chen, W, Gu, M, Shen, S, Cao, G. Thermal and economic analyses of solar desalination system with evacuated tube collectors. Solar Energy 2013; 93: 144–150, DOI: 10.1016/j.solener.2013.03.009
- [9] Calise, F, Dentice d’Accadia, M, Piacentino, A. A novel solar trigeneration system integrating PVT (photovoltaic/thermal collectors) and SW (seawater) desalination: Dynamic simulation and economic assessment. Energy 2014; 67: 129–148, DOI: 10.1016/j.energy.2013.12.060
- [10] Zhang, Z, Hu, Z, Xu, H, Dai, X, Wang, J, Jiao, W, Yuan, Y, Phelan, P. Theoretical analysis of a solar-powered multi-effect distillation integrated with concentrating photovoltaic/thermal system. Desalination 2019; 468: 114074, DOI: 10.1016/j.desal.2019.114074
- [11] Alsehli, M, Alzahrani, M, Choi, JK. A novel design for solar integrated multi-effect distillation driven by sensible heat and alternate storage tanks. Desalination 2019; 468: 114061, DOI: 10.1016/j.desal.2019.07.001
- [12] Masoud Parsa, S, Majidniya, M, Alawee, WH, Dhahad, HA, Muhammad Ali, H, Afrand, M, Amidpour, M. Thermodynamic, economic, and sensitivity analysis of salt gradient solar pond (SGSP) integrated with a low-temperature multi effect desalination (MED): Case study, Iran. Sustainable Energy Technologies and Assessments 2021; 47: 101478, DOI: 10.1016/j.seta.2021.101478
- [13] Soliman, AM, Mabrouk, A, Eldean, MAS, Fath, HES. Techno-economic analysis of the impact of working fluids on the concentrated solar power combined with multi-effect distillation (Csp-med). Desalination and Water Treatment 2021; 210: 1–21, DOI: 10.5004/dwt.2021.26566
- [14] Naminezhad, A, Mehregan, M. Energy and exergy analyses of a hybrid system integrating solar-driven organic Rankine cycle, multi-effect distillation, and reverse osmosis desalination systems. Renewable Energy 2022; 185: 888–903, DOI: 10.1016/j.renene.2021.12.076
- [15] Karaca, G, Dolgun, EC, Kosan, M, Aktas, M. Photovoltaic-Thermal solar energy system design for dairy industry. Journal of Energy Systems 2019; 3: 86–95, DOI: 10.30521/jes.565174
- [16] Ortega-Delgado, B, García-Rodríguez, L, Alarcón-Padilla, DC. Opportunities of improvement of the MED seawater desalination process by pretreatments allowing high-temperature operation. Desalination and Water Treatment 2017; 97: 94–108, DOI: 10.5004/dwt.2017.21679
- [17] Sharqawy, MH, Lienhard V, JH, Zubair, SM. Thermophysical properties of seawater: A review of existing correlations and data. Desalination and Water Treatment 2010; 16: 354–380, DOI: 10.5004/dwt.2010.1079
- [18] Nayar, KG, Sharqawy, MH, Banchik, LD, Lienhard, JH. Thermophysical properties of seawater: A review and new correlations that include pressure dependence. Desalination 2016; 390: 1–24, DOI: 10.1016/j.desal.2016.02.024
- [19] El-Dessouky, H, Ettouney, H. Fundamentals of Salt Water Desalination. Amsterdam, NETHERLANDS: Elsevier 2002.
- [20] El-Dessouky, H, Alatiqi, I, Bingulac, S, Ettouney, H. Steady-state analysis of the multiple effect evaporation desalination process. Chemical Engineering and Technology 1998; 21: 437–451, DOI: 10.1002/(SICI)1521-4125(199805)21:5<437::AID-CEAT437>3.0.CO;2-D
- [21] Nafey, AS, Fath, HES, Mabrouk, AA. Thermoeconomic design of a multi-effect evaporation mechanical vapor compression (MEE-MVC) desalination process. Desalination 2008; 230: 1–15, DOI: 10.1016/j.desal.2007.08.021
- [22] Elsayed, ML, Mesalhy, O, Mohammed, RH, Chow, LC. Performance modeling of MED-MVC systems: Exergy-economic analysis. Energy 2019; 166: 552–568, DOI: 10.1016/j.energy.2018.10.080
- [23] Shahzad, MW, Thu, K, Kim, Y deuk, Ng, KC. An experimental investigation on MEDAD hybrid desalination cycle. Applied Energy 2015; 148: 273–281, DOI: 10.1016/j.apenergy.2015.03.062
- [24] Buonomano, A, Calise, F, Palombo, A. Solar heating and cooling systems by absorption and adsorption chillers driven by stationary and concentrating photovoltaic/thermal solar collectors: Modelling and simulation. Renewable and Sustainable Energy Reviews 2018; 82: 1874–1908, DOI: 10.1016/j.rser.2017.10.059
- [25] Soliman, AMA, Hassan, H, Ookawara, S. An experimental study of the performance of the solar cell with heat sink cooling system. Energy Procedia 2019; 162: 127–135, DOI: 10.1016/j.egypro.2019.04.014
- [26] Gad, R, Mahmoud, H, Ookawara, S, Hassan, H. Energy, exergy, and economic assessment of thermal regulation of PV panel using hybrid heat pipe-phase change material cooling system. Journal of Cleaner Production 2022; 364: 132489, DOI: 10.1016/j.jclepro.2022.132489