Research Article
BibTex RIS Cite

Year 2025, Volume: 9 Issue: 2, 186 - 193, 30.06.2025
https://doi.org/10.30521/jes.1553988

Abstract

References

  • [1] International Energy Agency. Renewables 2022 [Internet]. 2022 [cited 2025 Jun 15]. Available from: https://www.iea.org/reports/renewables-2022
  • [2] Grätzel M. Dye-sensitized solar cells. Journal of Photochemistry and Photobiology C: Photochemistry Reviews. 2003;4(2):145–153. doi:10.1016/S1389-5567(03)00026-1
  • [3] O'Regan, B., & Grätzel, M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO₂ films. Nature. 1991;353:737–740. doi:10.1038/353737a0
  • [4] Wang, Z. S., Kawauchi, H., Kashima, T., & Arakawa, H. Dye-sensitized solar cells with high energy conversion efficiency. Chemical Communications. 2005;(34):4351–4353. doi:10.1039/B506936E
  • [5] Calogero, G., & Di Marco, G. Red Sicilian orange and purple eggplant fruits as natural sensitizers for dye-sensitized solar cells. Solar Energy Materials and Solar Cells. 2008;92(11):1341–1346. doi:10.1016/j.solmat.2008.05.021
  • [6] Narayan, M. R. Review: Dye sensitized solar cells based on natural photosensitizers. Renewable and Sustainable Energy Reviews. 2012;16(1):208–215. doi:10.1016/j.rser.2011.07.148
  • [7] Hao, S., Wu, J., Huang, Y., & Lin, J. Natural dyes as photosensitizers for dye-sensitized solar cells. Solar Energy. 2006;80(2):209–214. doi:10.1016/j.solener.2005.01.007
  • [8] Ezike, S. C., Hyelnasinyi, C. N., Salawu, M. A., Wansah, J. F., Ossai, A. N., & Agu, N. N. Synergistic effect of chlorophyll and anthocyanin co-sensitizers in TiO₂-based dye-sensitized solar cells. Surfaces and Interfaces. 2021;22:100882. doi:10.1016/j.surfin.2020.100882
  • [9] Patni, N., Pillai, S. G., & Sharma, P. Effect of using betalain, anthocyanin and chlorophyll dyes together as a sensitizer on enhancing the efficiency of dye-sensitized solar cell. International Journal of Energy Research. 2020;44(13):10846–10859. doi:10.1002/er.5752
  • [10] Ghann, W., Kang, H., Sheikh, T., Yadav, S., Chavez-Gil, T., Nesbitt, F., & Uddin, J. Fabrication, optimization and characterization of natural dye sensitized solar cell. Scientific Reports. 2017;7:41470. doi:10.1038/srep41470
  • [11] Bhuiyan, M. M. H., Kabir, F., Manir, M. S., Rahaman, M. S., Hossain, M. R., Barua, P., Ghosh, B., Mitsugi, F., Ikegami, T., Huque, S., & Khan, M. A. Effect of combination of natural dyes and the blocking layer on the performance of DSSC. In: Solar Cells - Theory, Materials and Recent Advances [Internet]. IntechOpen; 2021. doi:10.5772/intechopen.94760
  • [12] Favaro, L. I. L., Balcão, V. M., Rocha, L. K. H., Silva, E. C., Oliveira Jr., J. M., Vila, M. M. D. C., Tubino, M., Nakashima, T., Calgaroto, S. B., & Faria, R. C. Physicochemical characterization of a crude anthocyanin extract from the fruits of Jussara. Journal of the Brazilian Chemical Society. 2018;29(10):2072–2088. doi:10.21577/0103-5053.20180147
  • [13] Nurdin, M., Amri, M., Suryani, M., & Arsyad, A. Characterization of anthocyanin pigment extract from purple sweet potato (Ipomoea batatas L.) using FTIR and UV–Vis. IOP Conference Series: Earth and Environmental Science. 2021;755(1):012040. doi:10.1088/1755-1315/755/1/012040
  • [14] Maurya, I. C., Singh, S., Srivastava, P., Maiti, B., & Bahadur, L. Natural dye extract from Cassia fistula and its application in dye-sensitized solar cell: Experimental and density functional theory studies. Optical Materials. 2019;90:273–280. doi:10.1016/j.optmat.2019.02.037
  • [15] Mejica, G. F. C., Ramaraj, R., & Unpaprom, Y. Natural dye (chlorophyll, anthocyanin, carotenoid, flavonoid) photosensitizer for dye-sensitized solar cell: A review. Maejo International Journal of Energy and Environmental Communication. 2022;4(1):12–22. doi:10.54279/mijeec.v4i1.247970
  • [16] Shirkavand, M., Bavir, M., Fattah, A., & Reza, H. The construction and comparison of dye-sensitized solar cells with blackberry and N719 dyes. Journal of Optoelectronical Nanostructures. 2018;3(1):79–92. Available from: http://jopn.miau.ac.ir/article_2825_a2e9dd10482778a6a00e3742931a2435.pdf
  • [17] Damit, D. N. F. P., Galappaththi, K., Lim, A., Petra, M. I., & Ekanayake, P. Formulation of water to ethanol ratio as extraction solvents of Ixora coccinea and Bougainvillea glabra and their effect on dye aggregation in relation to DSSC performance. Ionics. 2017;23(2):485–495. doi:10.1007/s11581-016-1859-y
  • [18] Kim, J.-H., Kim, D.-H., So, J.-H., & Koo, H.-J. Toward eco-friendly dye-sensitized solar cells (DSSCs): Natural dyes and aqueous electrolytes. Polymers. 2021;13(13):2093. doi:10.3390/polym13132093
  • [19] Calogero, G., Di Marco, G., Cazzanti, S., Caramori, S., Argazzi, R., & Bignozzi, C. A. Efficient dye-sensitized solar cells using red turnip and purple wild Sicilian prickly pear fruits. International Journal of Molecular Sciences. 2011;11(1):254–267. doi:10.3390/ijms11010254
  • [20] Hao, S., Wu, J., Huang, Y., & Lin, J. Natural dyes as photosensitizers for dye-sensitized solar cell. Solar Energy. 2006;80(2):209–214. doi:10.1016/j.solener.2005.05.009
  • [21] Hosseinnezhad, M., Rouhani, S., Gharanjig, K., & Moradian, S. The effect of dye purification on the photovoltaic performance of natural dye-sensitized solar cells. Materials Science in Semiconductor Processing. 2014;27:733–739. doi:10.1016/j.mssp.2014.08.017
  • [22] Kay, A., & Grätzel, M. Artificial photosynthesis. 1. Photosensitization of TiO₂ solar cells with chlorophyll derivatives and related natural porphyrins. The Journal of Physical Chemistry. 1993;97(23):6272–6277. doi:10.1021/j100125a029

Effect of dye content concentration chlorophyll-anthocyanin on light absorption rate and characteristics of natural dye-sensitized solar cell

Year 2025, Volume: 9 Issue: 2, 186 - 193, 30.06.2025
https://doi.org/10.30521/jes.1553988

Abstract

Renewable energy materials like Dye-Sensitized Solar Cell (DSSC) using the photoelectrochemical mechanisms have gathered considerable attention worldwide. This study explores the use of natural dyes, specifically anthocyanin extracted from beetroot (Beta vulgaris L.) roots and chlorophyll from alfalfa (Medicago sativa L.) leaves, as sensitizers in natural DSSC. DSSC sensitized solely with anthocyanin exhibited low performance, with an efficiency of η = 0.0131%. To enhance cell efficiency, a combination of anthocyanin and chlorophyll dyes was tested in various volume ratios to determine the optimal mixture for maximum efficiency. The UV absorption spectrum of the combined dyes demonstrated a wider absorption range and greater absorbance in the visible light spectrum compared to anthocyanin alone. The optimized combination of 80% anthocyanin and 20% chlorophyll in the DSSC resulted in parameters of Isc = 0.276 mA, Voc = 0.512 V, and FF = 0.313, leading to a maximum efficiency of 0.0197%.

Supporting Institution

State University of Malang

Thanks

The researcher would like to thank the State University of Malang for helping carry out this research.

References

  • [1] International Energy Agency. Renewables 2022 [Internet]. 2022 [cited 2025 Jun 15]. Available from: https://www.iea.org/reports/renewables-2022
  • [2] Grätzel M. Dye-sensitized solar cells. Journal of Photochemistry and Photobiology C: Photochemistry Reviews. 2003;4(2):145–153. doi:10.1016/S1389-5567(03)00026-1
  • [3] O'Regan, B., & Grätzel, M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO₂ films. Nature. 1991;353:737–740. doi:10.1038/353737a0
  • [4] Wang, Z. S., Kawauchi, H., Kashima, T., & Arakawa, H. Dye-sensitized solar cells with high energy conversion efficiency. Chemical Communications. 2005;(34):4351–4353. doi:10.1039/B506936E
  • [5] Calogero, G., & Di Marco, G. Red Sicilian orange and purple eggplant fruits as natural sensitizers for dye-sensitized solar cells. Solar Energy Materials and Solar Cells. 2008;92(11):1341–1346. doi:10.1016/j.solmat.2008.05.021
  • [6] Narayan, M. R. Review: Dye sensitized solar cells based on natural photosensitizers. Renewable and Sustainable Energy Reviews. 2012;16(1):208–215. doi:10.1016/j.rser.2011.07.148
  • [7] Hao, S., Wu, J., Huang, Y., & Lin, J. Natural dyes as photosensitizers for dye-sensitized solar cells. Solar Energy. 2006;80(2):209–214. doi:10.1016/j.solener.2005.01.007
  • [8] Ezike, S. C., Hyelnasinyi, C. N., Salawu, M. A., Wansah, J. F., Ossai, A. N., & Agu, N. N. Synergistic effect of chlorophyll and anthocyanin co-sensitizers in TiO₂-based dye-sensitized solar cells. Surfaces and Interfaces. 2021;22:100882. doi:10.1016/j.surfin.2020.100882
  • [9] Patni, N., Pillai, S. G., & Sharma, P. Effect of using betalain, anthocyanin and chlorophyll dyes together as a sensitizer on enhancing the efficiency of dye-sensitized solar cell. International Journal of Energy Research. 2020;44(13):10846–10859. doi:10.1002/er.5752
  • [10] Ghann, W., Kang, H., Sheikh, T., Yadav, S., Chavez-Gil, T., Nesbitt, F., & Uddin, J. Fabrication, optimization and characterization of natural dye sensitized solar cell. Scientific Reports. 2017;7:41470. doi:10.1038/srep41470
  • [11] Bhuiyan, M. M. H., Kabir, F., Manir, M. S., Rahaman, M. S., Hossain, M. R., Barua, P., Ghosh, B., Mitsugi, F., Ikegami, T., Huque, S., & Khan, M. A. Effect of combination of natural dyes and the blocking layer on the performance of DSSC. In: Solar Cells - Theory, Materials and Recent Advances [Internet]. IntechOpen; 2021. doi:10.5772/intechopen.94760
  • [12] Favaro, L. I. L., Balcão, V. M., Rocha, L. K. H., Silva, E. C., Oliveira Jr., J. M., Vila, M. M. D. C., Tubino, M., Nakashima, T., Calgaroto, S. B., & Faria, R. C. Physicochemical characterization of a crude anthocyanin extract from the fruits of Jussara. Journal of the Brazilian Chemical Society. 2018;29(10):2072–2088. doi:10.21577/0103-5053.20180147
  • [13] Nurdin, M., Amri, M., Suryani, M., & Arsyad, A. Characterization of anthocyanin pigment extract from purple sweet potato (Ipomoea batatas L.) using FTIR and UV–Vis. IOP Conference Series: Earth and Environmental Science. 2021;755(1):012040. doi:10.1088/1755-1315/755/1/012040
  • [14] Maurya, I. C., Singh, S., Srivastava, P., Maiti, B., & Bahadur, L. Natural dye extract from Cassia fistula and its application in dye-sensitized solar cell: Experimental and density functional theory studies. Optical Materials. 2019;90:273–280. doi:10.1016/j.optmat.2019.02.037
  • [15] Mejica, G. F. C., Ramaraj, R., & Unpaprom, Y. Natural dye (chlorophyll, anthocyanin, carotenoid, flavonoid) photosensitizer for dye-sensitized solar cell: A review. Maejo International Journal of Energy and Environmental Communication. 2022;4(1):12–22. doi:10.54279/mijeec.v4i1.247970
  • [16] Shirkavand, M., Bavir, M., Fattah, A., & Reza, H. The construction and comparison of dye-sensitized solar cells with blackberry and N719 dyes. Journal of Optoelectronical Nanostructures. 2018;3(1):79–92. Available from: http://jopn.miau.ac.ir/article_2825_a2e9dd10482778a6a00e3742931a2435.pdf
  • [17] Damit, D. N. F. P., Galappaththi, K., Lim, A., Petra, M. I., & Ekanayake, P. Formulation of water to ethanol ratio as extraction solvents of Ixora coccinea and Bougainvillea glabra and their effect on dye aggregation in relation to DSSC performance. Ionics. 2017;23(2):485–495. doi:10.1007/s11581-016-1859-y
  • [18] Kim, J.-H., Kim, D.-H., So, J.-H., & Koo, H.-J. Toward eco-friendly dye-sensitized solar cells (DSSCs): Natural dyes and aqueous electrolytes. Polymers. 2021;13(13):2093. doi:10.3390/polym13132093
  • [19] Calogero, G., Di Marco, G., Cazzanti, S., Caramori, S., Argazzi, R., & Bignozzi, C. A. Efficient dye-sensitized solar cells using red turnip and purple wild Sicilian prickly pear fruits. International Journal of Molecular Sciences. 2011;11(1):254–267. doi:10.3390/ijms11010254
  • [20] Hao, S., Wu, J., Huang, Y., & Lin, J. Natural dyes as photosensitizers for dye-sensitized solar cell. Solar Energy. 2006;80(2):209–214. doi:10.1016/j.solener.2005.05.009
  • [21] Hosseinnezhad, M., Rouhani, S., Gharanjig, K., & Moradian, S. The effect of dye purification on the photovoltaic performance of natural dye-sensitized solar cells. Materials Science in Semiconductor Processing. 2014;27:733–739. doi:10.1016/j.mssp.2014.08.017
  • [22] Kay, A., & Grätzel, M. Artificial photosynthesis. 1. Photosensitization of TiO₂ solar cells with chlorophyll derivatives and related natural porphyrins. The Journal of Physical Chemistry. 1993;97(23):6272–6277. doi:10.1021/j100125a029
There are 22 citations in total.

Details

Primary Language English
Subjects Solar Energy Systems
Journal Section Research Article
Authors

Prihanto Trihutomo 0000-0002-0758-4198

Submission Date September 21, 2024
Acceptance Date June 3, 2025
Early Pub Date June 4, 2025
Publication Date June 30, 2025
Published in Issue Year 2025 Volume: 9 Issue: 2

Cite

Vancouver Trihutomo P. Effect of dye content concentration chlorophyll-anthocyanin on light absorption rate and characteristics of natural dye-sensitized solar cell. Journal of Energy Systems. 2025;9(2):186-93.

Journal of Energy Systems is licensed under CC BY-NC 4.0