Research Article
BibTex RIS Cite
Year 2017, Volume: 1 Issue: 4, 138 - 147, 31.10.2017
https://doi.org/10.30521/jes.348335

Abstract

References

  • Verbruggen, A, Di Nucci, M R, Fischedick, M, Haas, R, Hvelplund, F, Lauber, V, Lorenzoni, A, et al. Europe’s electricity regime: Restoration or thorough transition. Int. J. Sustainable Energy Planning and Management 2015; 5, 57-68 <doi:10.5278/ijsepm.2015.5.6>
  • Ngan, M S, Tan, C W. Assessment of economic viability for PV/wind/diesel hybrid energy system in southern Peninsular Malaysia. Renewable and Sustainable Energy Reviews 2012 16, 634–647 <doi:10.1016/j.rser.2011.08.028>
  • Republic of Turkey Ministry of Energy and Natural Resources, Mavi Kitap- Enerji ve Tabii Kaynaklar Bakanlığı ile Bağlı, İlgili ve İlişkili Kuruluşların Amaç ve Faaliyetleri, 2016.
  • Kaldellis, J K. The wind potential impact on the maximum wind energy penetration in autonomous electrical grids. Renewable Energy 2008, 33(7), 1665-1677 <doi:10.1016/j.renene.2007.09.011>
  • Naciri, M, Aggour, M, Ait Ahmed, W. Wind energy storage by pumped hydro station. Journal of Energy Systems 2017, 1(1), 32-42 <http://dergipark.gov.tr/jes/issue/30882/329315>
  • Rodriguez, A, Astrain, D, Martinez, A, Gubia, E, Sorbet F J. Thermoelectric-driven autonomous sensors for a biomass power plant, Journal of Electronic Materials 2013, 42(7), 2006-2013 <doi:10.1007/s11664-013-2504-4>
  • Kahraman, S, Podlogar, M, Bernik, S, Güder, H S. Facile Synthesis of Cu2ZnSnS4 Photovoltaic Absorber Thin Films via Sulfurization of Cu2SnS3/ZnS Layers. Metallurgical and Materials Transactions A 2014, 45, 2326-2334 <doi:10.1007/s11661-013-2164-2>
  • Gökçöl, C, Uğurlu, A. Current situation of wind energy in Turkey and assesment of Yalova’s wind energy potential. Electronic Journal of Vocational Colleges 2016, 6(3), 49-59< http://dergipark.gov.tr/ejovoc/issue/december_2016>
  • Bianchini, A, Magnelli, N, Ferrara, G, Carnevale, E A, Ferrari, L. Optimization of a PV-wind-diesel hybrid system for a remote stand-alone application. Energy Procedia 2015, 81, 133–45 <doi:10.1016/j.egypro.2015.12.068>
  • Adaramola, M S, Paul, S S, Oyewola, O M. Assessment of decentralized hybrid PV solar-diesel power system for applications in northern part of Nigeria, Energy Sustainable Development 2014, 19, 72–82 <doi:10.1016/j.esd.2013.12.007>
  • Belfkira, R, Zhang, L, Barakat, G. Optimal sizing study of hybrid wind/PV/diesel power generation unit. Solar Energy 2011, 85, 100–110 <doi:10.1016/j.solener.2010.10.018>
  • José, B A, Rodolfo, D L. Simulation and optimization of stand-alone hybrid renewable energy systems. Renew. Sustainable Energy Rev. 2009, 13, 2111-2118 <doi:10.1016/j.rser.2009.01.010>
  • Arribas, L, Cano, L, Cruz, I, Mata, M, Llobet, E. PV–wind hybrid system performance: A new approach and a case study. Renewable Energy 2010, 35(1), 128-137 <doi:10.1016/j.renene.2009.07.002>
  • Salahi, S, Bahramara, S. Modeling operation problem of micro-grids considering economical, technical and environmental issues as mixed-integer non-linear programming. Int. J. Renewable Energy Development 2016, 5(2), 139-149 <doi:10.14710/ijred.5.2.139-149>
  • Migoni, G, Rullo, P, Bergero, F, Kofman, E. Efficient simulation of hybrid renewable energy systems. Int. J. Hydrogen Energy 2016, 41(32), 13934-13949 <doi:10.1016/j.ijhydene.2016.06.019>
  • Chellali, F B M, Recioui, A, Redah Yaiche, M, Hamid, B. A hybrid wind/solar/diesel stand-alone system optimisation for remote areas in Algeria, Int. J. Renewable Energy Technology 2014, 5(1), 12-24 <doi:10.1504/ijret.2014.059658>
  • REPA. http://www.eie.gov.tr/YEK/repa/SAKARYA-REPA.pdf. Accessed from the web page on 27.10.2017.
  • GEPA. http://www.eie.gov.tr/mycalculator/pages/54.aspx Accessed from the web page on 27.10.2017.
  • HOMER, HOMER Hybrid Optimization of Multiple Energy Resources, Microgrid Software, 2016.
  • Lambert T, Gilman P, Lilienthal P. Micropower system modeling with HOMER. In: Farret FA, Simoes MG, editors. Integration of Alternative Sources of Energy, New Jersey, USA: John Wiley & Sons, Inc, 2006, 379-418
  • Dursun, B. Determination of the optimum hybrid renewable power generating systems for Kavaklı campus of Kirklareli University, Turkey. Renew. Sustainable Energy Rev. 2012, 16, 6183–6190 <doi:10.1016/j.rser.2012.07.017>
  • Nelson, D B, Nehrir, M H, Wang, C. Unit sizing and cost analysis of stand-alone hybrid wind/PV/fuel cell power generation systems, Renewable Energy 2006, 31(10), 1641-1656 <doi:10.1016/j.renene.2005.08.031>
  • Dalton, G J, Lockington, D A, Baldock, T E. Feasibility analysis of renewable energy supply options for a grid-connected large hotel, Renewable Energy 2009, 34: 955–964 <doi:10.1016/j.renene.2008.08.012>
  • TROJAN. Trojan L16P Battery Specifications, Trojan Batter Co, 2016 <http://www.trojanbattery.com/>

A case study of PV-wind-diesel-battery hybrid system

Year 2017, Volume: 1 Issue: 4, 138 - 147, 31.10.2017
https://doi.org/10.30521/jes.348335

Abstract

In this paper, a mountain house in Sakarya, Turkey,
which are mainly powered by renewable energy resources rather than the
conventional ones, are designed. Therefore, numerous hybrid renewable power
generating systems including the components like wind turbine, PV, diesel
generator and battery are considered in different configurations. Eventually,
they are technically and economically analyzed by using the well-known HOMER
software. Furthermore, a sensitivity analysis is also performed considering
variations in two important parameters, namely wind speed and solar
irradiation. According to the results, the hybrid power generation with the
optimal hybrid configuration system includes a 2 kW photo voltaic array, a 1 kW
wind turbine, a 1 kW diesel generator, a 1 kW power converter and 12 batteries.
In addition, this system has the net present cost of 29,304 $ as well as the
cost of energy as 0.752 $/kWh. Lastly, the optimum hybrid system is then
compared to the other hybrid systems regarding some non-eco-friendly
pollutants.

References

  • Verbruggen, A, Di Nucci, M R, Fischedick, M, Haas, R, Hvelplund, F, Lauber, V, Lorenzoni, A, et al. Europe’s electricity regime: Restoration or thorough transition. Int. J. Sustainable Energy Planning and Management 2015; 5, 57-68 <doi:10.5278/ijsepm.2015.5.6>
  • Ngan, M S, Tan, C W. Assessment of economic viability for PV/wind/diesel hybrid energy system in southern Peninsular Malaysia. Renewable and Sustainable Energy Reviews 2012 16, 634–647 <doi:10.1016/j.rser.2011.08.028>
  • Republic of Turkey Ministry of Energy and Natural Resources, Mavi Kitap- Enerji ve Tabii Kaynaklar Bakanlığı ile Bağlı, İlgili ve İlişkili Kuruluşların Amaç ve Faaliyetleri, 2016.
  • Kaldellis, J K. The wind potential impact on the maximum wind energy penetration in autonomous electrical grids. Renewable Energy 2008, 33(7), 1665-1677 <doi:10.1016/j.renene.2007.09.011>
  • Naciri, M, Aggour, M, Ait Ahmed, W. Wind energy storage by pumped hydro station. Journal of Energy Systems 2017, 1(1), 32-42 <http://dergipark.gov.tr/jes/issue/30882/329315>
  • Rodriguez, A, Astrain, D, Martinez, A, Gubia, E, Sorbet F J. Thermoelectric-driven autonomous sensors for a biomass power plant, Journal of Electronic Materials 2013, 42(7), 2006-2013 <doi:10.1007/s11664-013-2504-4>
  • Kahraman, S, Podlogar, M, Bernik, S, Güder, H S. Facile Synthesis of Cu2ZnSnS4 Photovoltaic Absorber Thin Films via Sulfurization of Cu2SnS3/ZnS Layers. Metallurgical and Materials Transactions A 2014, 45, 2326-2334 <doi:10.1007/s11661-013-2164-2>
  • Gökçöl, C, Uğurlu, A. Current situation of wind energy in Turkey and assesment of Yalova’s wind energy potential. Electronic Journal of Vocational Colleges 2016, 6(3), 49-59< http://dergipark.gov.tr/ejovoc/issue/december_2016>
  • Bianchini, A, Magnelli, N, Ferrara, G, Carnevale, E A, Ferrari, L. Optimization of a PV-wind-diesel hybrid system for a remote stand-alone application. Energy Procedia 2015, 81, 133–45 <doi:10.1016/j.egypro.2015.12.068>
  • Adaramola, M S, Paul, S S, Oyewola, O M. Assessment of decentralized hybrid PV solar-diesel power system for applications in northern part of Nigeria, Energy Sustainable Development 2014, 19, 72–82 <doi:10.1016/j.esd.2013.12.007>
  • Belfkira, R, Zhang, L, Barakat, G. Optimal sizing study of hybrid wind/PV/diesel power generation unit. Solar Energy 2011, 85, 100–110 <doi:10.1016/j.solener.2010.10.018>
  • José, B A, Rodolfo, D L. Simulation and optimization of stand-alone hybrid renewable energy systems. Renew. Sustainable Energy Rev. 2009, 13, 2111-2118 <doi:10.1016/j.rser.2009.01.010>
  • Arribas, L, Cano, L, Cruz, I, Mata, M, Llobet, E. PV–wind hybrid system performance: A new approach and a case study. Renewable Energy 2010, 35(1), 128-137 <doi:10.1016/j.renene.2009.07.002>
  • Salahi, S, Bahramara, S. Modeling operation problem of micro-grids considering economical, technical and environmental issues as mixed-integer non-linear programming. Int. J. Renewable Energy Development 2016, 5(2), 139-149 <doi:10.14710/ijred.5.2.139-149>
  • Migoni, G, Rullo, P, Bergero, F, Kofman, E. Efficient simulation of hybrid renewable energy systems. Int. J. Hydrogen Energy 2016, 41(32), 13934-13949 <doi:10.1016/j.ijhydene.2016.06.019>
  • Chellali, F B M, Recioui, A, Redah Yaiche, M, Hamid, B. A hybrid wind/solar/diesel stand-alone system optimisation for remote areas in Algeria, Int. J. Renewable Energy Technology 2014, 5(1), 12-24 <doi:10.1504/ijret.2014.059658>
  • REPA. http://www.eie.gov.tr/YEK/repa/SAKARYA-REPA.pdf. Accessed from the web page on 27.10.2017.
  • GEPA. http://www.eie.gov.tr/mycalculator/pages/54.aspx Accessed from the web page on 27.10.2017.
  • HOMER, HOMER Hybrid Optimization of Multiple Energy Resources, Microgrid Software, 2016.
  • Lambert T, Gilman P, Lilienthal P. Micropower system modeling with HOMER. In: Farret FA, Simoes MG, editors. Integration of Alternative Sources of Energy, New Jersey, USA: John Wiley & Sons, Inc, 2006, 379-418
  • Dursun, B. Determination of the optimum hybrid renewable power generating systems for Kavaklı campus of Kirklareli University, Turkey. Renew. Sustainable Energy Rev. 2012, 16, 6183–6190 <doi:10.1016/j.rser.2012.07.017>
  • Nelson, D B, Nehrir, M H, Wang, C. Unit sizing and cost analysis of stand-alone hybrid wind/PV/fuel cell power generation systems, Renewable Energy 2006, 31(10), 1641-1656 <doi:10.1016/j.renene.2005.08.031>
  • Dalton, G J, Lockington, D A, Baldock, T E. Feasibility analysis of renewable energy supply options for a grid-connected large hotel, Renewable Energy 2009, 34: 955–964 <doi:10.1016/j.renene.2008.08.012>
  • TROJAN. Trojan L16P Battery Specifications, Trojan Batter Co, 2016 <http://www.trojanbattery.com/>
There are 24 citations in total.

Details

Journal Section Research Articles
Authors

Adem Uğurlu

Cihan Gökçöl This is me

Publication Date October 31, 2017
Acceptance Date December 26, 2017
Published in Issue Year 2017 Volume: 1 Issue: 4

Cite

Vancouver Uğurlu A, Gökçöl C. A case study of PV-wind-diesel-battery hybrid system. Journal of Energy Systems. 2017;1(4):138-47.

Journal of Energy Systems is the official journal of 

European Conference on Renewable Energy Systems (ECRES8756 and


Electrical and Computer Engineering Research Group (ECERG)  8753


Journal of Energy Systems is licensed under CC BY-NC 4.0