Research Article
BibTex RIS Cite

Piezo-actuated common rail injector structure and efficient design

Year 2018, Volume: 2 Issue: 3, 97 - 114, 30.09.2018
https://doi.org/10.30521/jes.453560

Abstract

Piezo-actuated
common rail injectors are often utilized in today’s automobile engines’ fuel
systems. This high-tech instrument decreases fuel consumption, thereby harmful
exhaust emissions are also lowered especially in diesel ignition engines. Owing
to ultra-high pressure in piezo-injection systems, fuel droplets are scaled
down into a smaller particle form and thus provided more efficient combustion.
Pulverized fuel droplets are evaporated and oxidized in a very short time and
they provide exact combustion inside the combustion chamber.  In this study, numerical simulation of a
piezo-actuated common rail injector fluid-mechanical model with detail is
demonstrated. The hydraulic and mechanical component interaction is modeled
through the fluid-mechanical components. Thus, the piezo injector dynamics are
predicted based on the geometry and the physical quantities describing the
equipment. Input voltage in the entrance is used to describe the piezo actuator
force for piezo-electric material. In model, fuel flows from the common rail to
a tee that separates the flow into two paths: fuel gallery and valve with the
inlet orifice. Using this detailed model, behavior of the piezo injector,
effects of the injector parameters on the fuel flow were investigated
numerically and results were represented.

References

  • Bauer S, Zhang H, Pfeifer A, Wenzlawski K. Diesel engines for passenger cars and Euro 6: entire system approach for the development of the fuel injection system, the air/EGR path and the emission after-treatment. In: 28th International Vienna Motor Symposium, 26-27 April 2007, Fortschritt-Berichte VDI, Reihe 12: Verkehrstechnik/Fahrzeugtechnik, Vienna: pp. 265-285
  • Tanaka H, Sato Y, Uri T. Development of a Common-Rail proportional injector controlled by a tandem arrayed giant-magnetostrictive-actuator. SAE Technical Paper 2001-01-3182 <https://doi.org/10.4271/2001-01-3182>
  • Bright CB, Garza JC. Possible very high speed rate shaping fuel injector. SAE Technical Paper 2007-01-4113 <https://doi.org/10.4271/2007-01-4113.>
  • Delphi Automotive. Direct acting light-duty diesel CR system. 2008, Technical Report.
  • Tanabe K, Kohketsu S, Nakayama S. Effect of fuel injection rate control on reduction of emissions and fuel consumption in heavy duty DI Diesel engine. SAE Technical Paper 2005-01-0907 <https://doi.org/10.4271/2005-01-0907>
  • Atzler F, Kastner O, Rotondi R, Weigand A. Multiple injection and rate shaping. Part 1: Emission reduction in passenger car diesel engines. SAE Technical Paper 2009-24-0004 <https://doi.org/10.4271/2009-24-0004>
  • Payri R, Salvador FJ, Gimeno J, De la Morena J. Influence of injector technology on injection and combustion development – Part 1: hydraulic characterization. Appl Energy 2011; 88:1068–74. <https://doi.org/10.1016/j.apenergy.2010.10.012>
  • Catania AE, Ferrari A, Manno M, Spessa E. Experimental investigation of dynamics effects on multiple-injection common rail system performance. J Eng Gas Turbines Power 2008; 130:032806-2 <https://doi.org/10.1115/1.2835353>
  • Payri, R., Salvador, F., Gimeno, J., & la Morena, J.D. Influence of injector technology on injection and combustion development—Part 1: Hydraulic characterization. Applied Energy 2011, 1068–1074 <httpps://doi.org/10.1016/j.apenergy.2010.10.004>
  • MacLachlan, B., Elvin, N., Blaurock, C., & Kegan, N. Piezoelectric valve actuator for flexible diesel operation. In: Smart Structures and Materials, 14-18 March 2004, Industrial and commercial applications of smart structures technologies, San Diego, California, USA: pp. 167-178.
  • Wakisha, Y., Azetsu, A., & Oikawa, C. Effect of fuel injection rate shaping on spray combustion—Effect of the slope of injection rate rise on combustion. In University of Tokyo 4th COMODIA symposium, 1998 (pp. 441–446).
  • Boecking F. Passenger car CR systems for future emission standards. In: MTZ 7-8/2005, 2005, pp. 552–557.
  • Catania AE, Ferrari A, Mittica A, Spessa E. Engine performance comparison between different last generation typologies of advanced piezo and solenoid fuel injection systems. Commissioned technical report, Politecnico di Torino, Torino; November 2009.
  • Kastner O, Atzler F, Juvenelle C, Rotondi R, Weigand A. Directly actuated piezoinjectors for advanced injection strategies towards cleaner diesel engines. In: 7th Int. symposium towards cleaner diesel engine TDCE 2009, Aachen, June 2009.
  • Delphi Automotive. Direct acting light-duty diesel CR system. Technical report; 2008.
  • Catania AE, Ferrari A. Experimental analysis, modeling and control of volumetric radial-piston pumps. ASME Trans, J Fluids Eng 2011;133(8):081103 < https://doi.org/10.1115/1.4004443>
  • Kasper R, Schröder J, Wagner A. Schnellschaltendes hydraulikventil mit piezoelektrischem stellantrieb. O¨ lhydraul Pneumat 1997; 41:694–8.
  • Schernewski R. Modellbasierte Regelung ausgewahlter Antriebssystemkomponenten im Kraftfahrzeug. PhD thesis, Universitat Fridericiana zu Karlsruhe, Germany, 1999.
  • Schugt M. Aktor-Sensorverhalten von Piezoelementen in Kfz-Diesel-Einspritzsystemen. PhD thesis, Ruhr-Universitat Bochum, Germany, 2001.
  • Raupach C. Verfahren zur Stabilisierung der Kraftstoffdosierung bei Piezo-Einspritzventilen. PhD thesis, Ruhr-Universitat Bochum, Germany, 2007.
  • Wauer J. Zur modellierung piezoelektrischer wandler mit verteilten parametern. Z Angew Math Mech 1997; 77:365–6.
  • Kuhnen K, Janocha H. Nutzung der inharenten sensorischen eigenschaften von piezoelektrischen aktoren. Tech Messen 1999, 66(4):132–8.
  • Mehlfeldt D. Modellierung und optimale Steuerung piezoelektrisch aktuierter Einspritzventile. PhD thesis, Universitat Siegen, Germany, 2006.
  • Schwinn A, Janocha H. Self-configurable actuator–sensor-array for active vibration suppression. München 2000. Materials week.
  • Mehlfeldt D, Raupach C. Possibilities and limits of the utilization of inherent sensor properties of piezoelectric actuators. Berlin, 2007. Steuerungssysteme für den Antriebsstrang von Krtaftfahrzeugen.
  • Koten H. Piezo-Actuated Common Rail Injector Structure and Efficient Design, 6th Eur. Conf. Ren. Energy Sys. 25-27 June 2018, Istanbul, Turkey.
  • Konrad, R. Diesel Engine Management, BOSCH, 2014.
  • Parthasarathy, M, Joshua Ramesh Lalvani, I, Dhinesh, B, Annamalai, K. Effect of hydrogen on ethanol–biodiesel blendon performance and emission characteristics of a direct injection diesel engine, ELSEVIER, Ecotoxicology and Environmental Safety 2016, 134:433–439 <https://doi.org/10.1016/j.ecoenv.2015.11.005>
  • Nalgundwar, A., Paul, B., Sharma, S., “Comparison of performance and emissions characteristics of DI CI engine fueled with dual biodiesel blends of palm and jatropha”, 2016. ELSEVIER, Fuel 173, 172–179 <httpps://doi.org/10.1016/j.fuel.2016.01.022>
  • Viera, J. P., Payri, R., Swantek, A. B., Duke, D. J., Sovis, N., Kastengren, A. L., Powell C. F., 2016. “Linking instantaneous rate of injection to X-ray needle lift measurements for a direct-acting piezoelectric injector”, ELSEVIER, Energy Conversion and Management 112, 350–358 <https://doi.org/10.1016/j.enconman.2016.01.038>
  • Nouraei, H. Design and Development of a Direct-Acting Piezoelectric Fuel Injector (MSc)., Department of Mechanical and Industrial Engineering University of Toronto, Canada, 2012.
  • Pogulyaev, Y.D., Baitimerov, R.M., Rozhdestvenskii, Y.V. Detailed Dynamic Modeling of Common Rail Piezo-Injector, Procedia Engineering 2015, 129:93-98 <https://doi.org/10.1016/j.proeng.2015.12.014>
  • Payri, R., Salvador, F.J., Carreres, M., De la Morena, J. Fuel temperature influence on the performance of a last generation common-rail diesel ballistic injector. Part II: 1D model development, validation and analysis, Energy Conversion and Management 2016, 114:376-391 <https://doi.org/10.1016/j.enconman.2016.02.043>
Year 2018, Volume: 2 Issue: 3, 97 - 114, 30.09.2018
https://doi.org/10.30521/jes.453560

Abstract

References

  • Bauer S, Zhang H, Pfeifer A, Wenzlawski K. Diesel engines for passenger cars and Euro 6: entire system approach for the development of the fuel injection system, the air/EGR path and the emission after-treatment. In: 28th International Vienna Motor Symposium, 26-27 April 2007, Fortschritt-Berichte VDI, Reihe 12: Verkehrstechnik/Fahrzeugtechnik, Vienna: pp. 265-285
  • Tanaka H, Sato Y, Uri T. Development of a Common-Rail proportional injector controlled by a tandem arrayed giant-magnetostrictive-actuator. SAE Technical Paper 2001-01-3182 <https://doi.org/10.4271/2001-01-3182>
  • Bright CB, Garza JC. Possible very high speed rate shaping fuel injector. SAE Technical Paper 2007-01-4113 <https://doi.org/10.4271/2007-01-4113.>
  • Delphi Automotive. Direct acting light-duty diesel CR system. 2008, Technical Report.
  • Tanabe K, Kohketsu S, Nakayama S. Effect of fuel injection rate control on reduction of emissions and fuel consumption in heavy duty DI Diesel engine. SAE Technical Paper 2005-01-0907 <https://doi.org/10.4271/2005-01-0907>
  • Atzler F, Kastner O, Rotondi R, Weigand A. Multiple injection and rate shaping. Part 1: Emission reduction in passenger car diesel engines. SAE Technical Paper 2009-24-0004 <https://doi.org/10.4271/2009-24-0004>
  • Payri R, Salvador FJ, Gimeno J, De la Morena J. Influence of injector technology on injection and combustion development – Part 1: hydraulic characterization. Appl Energy 2011; 88:1068–74. <https://doi.org/10.1016/j.apenergy.2010.10.012>
  • Catania AE, Ferrari A, Manno M, Spessa E. Experimental investigation of dynamics effects on multiple-injection common rail system performance. J Eng Gas Turbines Power 2008; 130:032806-2 <https://doi.org/10.1115/1.2835353>
  • Payri, R., Salvador, F., Gimeno, J., & la Morena, J.D. Influence of injector technology on injection and combustion development—Part 1: Hydraulic characterization. Applied Energy 2011, 1068–1074 <httpps://doi.org/10.1016/j.apenergy.2010.10.004>
  • MacLachlan, B., Elvin, N., Blaurock, C., & Kegan, N. Piezoelectric valve actuator for flexible diesel operation. In: Smart Structures and Materials, 14-18 March 2004, Industrial and commercial applications of smart structures technologies, San Diego, California, USA: pp. 167-178.
  • Wakisha, Y., Azetsu, A., & Oikawa, C. Effect of fuel injection rate shaping on spray combustion—Effect of the slope of injection rate rise on combustion. In University of Tokyo 4th COMODIA symposium, 1998 (pp. 441–446).
  • Boecking F. Passenger car CR systems for future emission standards. In: MTZ 7-8/2005, 2005, pp. 552–557.
  • Catania AE, Ferrari A, Mittica A, Spessa E. Engine performance comparison between different last generation typologies of advanced piezo and solenoid fuel injection systems. Commissioned technical report, Politecnico di Torino, Torino; November 2009.
  • Kastner O, Atzler F, Juvenelle C, Rotondi R, Weigand A. Directly actuated piezoinjectors for advanced injection strategies towards cleaner diesel engines. In: 7th Int. symposium towards cleaner diesel engine TDCE 2009, Aachen, June 2009.
  • Delphi Automotive. Direct acting light-duty diesel CR system. Technical report; 2008.
  • Catania AE, Ferrari A. Experimental analysis, modeling and control of volumetric radial-piston pumps. ASME Trans, J Fluids Eng 2011;133(8):081103 < https://doi.org/10.1115/1.4004443>
  • Kasper R, Schröder J, Wagner A. Schnellschaltendes hydraulikventil mit piezoelektrischem stellantrieb. O¨ lhydraul Pneumat 1997; 41:694–8.
  • Schernewski R. Modellbasierte Regelung ausgewahlter Antriebssystemkomponenten im Kraftfahrzeug. PhD thesis, Universitat Fridericiana zu Karlsruhe, Germany, 1999.
  • Schugt M. Aktor-Sensorverhalten von Piezoelementen in Kfz-Diesel-Einspritzsystemen. PhD thesis, Ruhr-Universitat Bochum, Germany, 2001.
  • Raupach C. Verfahren zur Stabilisierung der Kraftstoffdosierung bei Piezo-Einspritzventilen. PhD thesis, Ruhr-Universitat Bochum, Germany, 2007.
  • Wauer J. Zur modellierung piezoelektrischer wandler mit verteilten parametern. Z Angew Math Mech 1997; 77:365–6.
  • Kuhnen K, Janocha H. Nutzung der inharenten sensorischen eigenschaften von piezoelektrischen aktoren. Tech Messen 1999, 66(4):132–8.
  • Mehlfeldt D. Modellierung und optimale Steuerung piezoelektrisch aktuierter Einspritzventile. PhD thesis, Universitat Siegen, Germany, 2006.
  • Schwinn A, Janocha H. Self-configurable actuator–sensor-array for active vibration suppression. München 2000. Materials week.
  • Mehlfeldt D, Raupach C. Possibilities and limits of the utilization of inherent sensor properties of piezoelectric actuators. Berlin, 2007. Steuerungssysteme für den Antriebsstrang von Krtaftfahrzeugen.
  • Koten H. Piezo-Actuated Common Rail Injector Structure and Efficient Design, 6th Eur. Conf. Ren. Energy Sys. 25-27 June 2018, Istanbul, Turkey.
  • Konrad, R. Diesel Engine Management, BOSCH, 2014.
  • Parthasarathy, M, Joshua Ramesh Lalvani, I, Dhinesh, B, Annamalai, K. Effect of hydrogen on ethanol–biodiesel blendon performance and emission characteristics of a direct injection diesel engine, ELSEVIER, Ecotoxicology and Environmental Safety 2016, 134:433–439 <https://doi.org/10.1016/j.ecoenv.2015.11.005>
  • Nalgundwar, A., Paul, B., Sharma, S., “Comparison of performance and emissions characteristics of DI CI engine fueled with dual biodiesel blends of palm and jatropha”, 2016. ELSEVIER, Fuel 173, 172–179 <httpps://doi.org/10.1016/j.fuel.2016.01.022>
  • Viera, J. P., Payri, R., Swantek, A. B., Duke, D. J., Sovis, N., Kastengren, A. L., Powell C. F., 2016. “Linking instantaneous rate of injection to X-ray needle lift measurements for a direct-acting piezoelectric injector”, ELSEVIER, Energy Conversion and Management 112, 350–358 <https://doi.org/10.1016/j.enconman.2016.01.038>
  • Nouraei, H. Design and Development of a Direct-Acting Piezoelectric Fuel Injector (MSc)., Department of Mechanical and Industrial Engineering University of Toronto, Canada, 2012.
  • Pogulyaev, Y.D., Baitimerov, R.M., Rozhdestvenskii, Y.V. Detailed Dynamic Modeling of Common Rail Piezo-Injector, Procedia Engineering 2015, 129:93-98 <https://doi.org/10.1016/j.proeng.2015.12.014>
  • Payri, R., Salvador, F.J., Carreres, M., De la Morena, J. Fuel temperature influence on the performance of a last generation common-rail diesel ballistic injector. Part II: 1D model development, validation and analysis, Energy Conversion and Management 2016, 114:376-391 <https://doi.org/10.1016/j.enconman.2016.02.043>
There are 33 citations in total.

Details

Primary Language English
Subjects Mechanical Engineering
Journal Section Research Articles
Authors

Hasan Köten 0000-0002-1907-9420

Ebubekir Can Gunes This is me 0000-0002-0060-2285

Kubilay Guner This is me 0000-0002-2206-6276

Publication Date September 30, 2018
Acceptance Date September 18, 2018
Published in Issue Year 2018 Volume: 2 Issue: 3

Cite

Vancouver Köten H, Gunes EC, Guner K. Piezo-actuated common rail injector structure and efficient design. JES. 2018;2(3):97-114.

Journal of Energy Systems is the official journal of 

European Conference on Renewable Energy Systems (ECRES8756 and


Electrical and Computer Engineering Research Group (ECERG)  8753


Creative Commons License JES is licensed to the public under a Creative Commons Attribution 4.0 license.