Research Article
BibTex RIS Cite

Mathematical modeling of an innovative hybrid solar-gas dryer

Year 2018, Volume: 2 Issue: 4, 260 - 276, 31.12.2018
https://doi.org/10.30521/jes.457647

Abstract

This paper is devoted to develop a multivariable model (MM) of an innovative hybrid solar-gas dryer issued from a CFD study. The proposed (MM) was explored to predict the drying chamber temperature in forced convection (0.025kg/s) in two main operating modes (solar mode and gas mode). There is an indirect heating of drying air instead of direct heating inside the drying chamber as it was reported in conventional hybrid solar-gas dryers. CFD technique was used to simulate the temperature and airflow distribution inside the drying chamber. However, CFD simulation requires huge capacity of the processor for calculating and takes significant simulation time. Therefore, the multivariable model was developed to predict the drying temperature instantly with a notable reduction in simulation time. Root Mean Square (RMSE) was used to measure the difference between the predicted values by CFD and (MM) model. It was found that the results shown fairly good agreement with an RMSE lower than 2.35 confirming the pertinence of the proposed model. The developed model led to a quick output parameters estimation related to each climatic condition. Thus, it is very useful for synthesizing a control system of the temperature as well as the optimization of gas consumption.

References

  • Chauhan, S, P, Kumar, A, Tekasakul, P. Application of software in solar drying systems: A review. Renewable and Sustainable Energy Review 2015; 51: 1326-1337.DOI: https://doi.org/10.1016/j.rser.2015.07.025
  • Azaizia, Z, Kooli, S, Elkhadraoui, A, Hamdi, I. Investigation of a new solar greenhouse drying system for peppers. Int. J. Hydrogen Energy 2017; 42: 8818–8826. DOI: https://doi.org/10.1016/j.ijhydene.2016.11.180
  • Aghbashlo, M, Muller, J, Mobli, J, Madaldou, A, Rafiee, S. Modeling and simulation of deep-bed solar greenhouse drying of Chamomile flowers. Drying Technology 2015; 33: 684-695. DOI: https://doi.org/10.1080/07373937.2014.981278.
  • Aghbashlo, M, Kianmehr, MN, Samimi-Akhijahani, H. Influence of drying conditions on the effective moisture diffusivity, energy of activation and energy consumption during the thin-layer drying of berberis fruit (Baerberidaceae). Energy Conversion and Management 2008; 49(10): 2865-2871. DOI: https://doi.org/10.1016/j.enconman.2008.03.009
  • Boughali, S, Benmoussa, H, Bouchekima, B, Mennouch, D, Bouguettaia, H, Bechki, D. Crop drying by indirect active hybrid solar-electrical dryer in the eastern Algerian Septentrional Sahara. Solar Energy 2009; 83(12): 2223-2232. DOI: https://doi.org/10.1016/j.solener.2009.09.006.
  • Belloulid, M.O., Hamdi, H, Mandi, L, Ouazzani, N., Solar drying of wastewater sludge: a case study in Marrakesh, Morocco. Environmental Technology (United Kingdom) 2018; 1–7. DOI: 10.1080/09593330.2017.1421713.
  • Adams, RL, Thompson, JF. Improving drying uniformity in concurrent flow tunnel dehydrator. Transaction of ASAE 1985; 23(3): 890-892. DOI: 0001-2351/85/2803-0890$0.00
  • Raouzeos, GS, Saravacos, GD. Solar drying of raising. Drying Technology 1986; 4(4): 633-649. DOI: https://doi.org/10.1080/07373938608916353.
  • Amer, BMA, Hossain, MA, Gottschalk, K. Design and performance evaluation of a new hybrid dryer for banana. Energy Conversion and Management 2010; 51: 813-820. DOI: https://doi.org/10.1016/j.enconman.2009.11.016.
  • TadahmumYassen, A, Hussain Al-Kayiem, H. Experimental investigation and evaluation of hybrid solar/thermal dryer combined with supplementary recover dryer. Solar Energy 2016; 134: 284-293. DOI: https://doi.org/10.1016/j.solener.2016.05.011.
  • Lopez-Vidana, E, Mendez-Laguna, L, Rodriguez-Ramirez, J. Efficiency of a hybrid solar-gas dryer. Solar Energy 2013; 93: 23-31. DOI: https://doi.org/10.1016/j.solener.2013.01.027.
  • Oueslati, H, Benmbrouk, S, Mami, A. Design and installation of a solar-gas tunnel dryer. The 5th Int. Renewable Energy Congress IREC 2014; 1-9. DOI: 978-1-4799-2195-9/14/$31.00.
  • Junchangpood, A, Chanvattana, V. A simulation of temperatures and velocities distribution of a hot-air steam of a rubber smoke sheet drying room using CFD. Conf. Mech. Eng. Netw. Thail 2007; 24: 1041-1047.
  • Tekasakul, P, Promtong, M. Energy efficiency enhancement of natural rubber smoking process by flow improvement using a CFD technique. Applied Energy 2008; 85(9): 878-895. DOI: https://doi.org/10.1016/j.apenergy.2008.02.004.
  • Promtong, M, Tekasakul, P. CFD study of flow in natural rubber smoking room: I. Validation with the present smoking-room. Appl. Therm. Eng 2007; 27: 2113-2121. DOI: https://doi.org/10.1016/j.applthermaleng.2006.11.009.
  • Dejchanchaiwong, R, Tirawanichakul, Y, Tirawanichakul, S, Tekasakul, P. Single-phase and multiphase models for temperature and relative humidity calculations during forced convection in a rubber-sheet drying chamber. Maejo Int. J. Sci. Technol 2014; 8(2): 207-220. DOI: 10.14456/mijst.2014.29.
  • Sonthikun, S, Chairat, P, Fardsin, K, Kirirat, P, Kumar, A, Tekasakul, P. Computational fluid dynamic analysis of an innovative design of solar-biomass hybrid dryer: An experimental validation. Renewable Energy 2016; 92: 185-191. DOI: https://doi.org/10.1016/j.renene.2016.01.095.
  • Kumar, A, Tiwari, GN. Thermal modeling of a natural convection greenhouse drying system for jiggery: an experimental validation. Solar Energy 2006; 80: 677-701. DOI: https://doi.org/10.1080/14786451.2012.724070.
  • Tiwari, G.N., Das, T., Chen, C.R., Barnwal, P. Energy and Exergy analysis of greenhouse fish drying. Int J Exergy 2009; 6: 620-636. DOI: https://doi.org/10.1504/IJEX.2009.027493.
  • Prakash, O., Kumar, A. ANFIS modeling of a natural convection greenhouse drying system for jiggery: experimental validation. Int. J. Sustain Energy 2014; 33: 316-335. DOI: https://doi.org/10.1080/14786451.2012.724070.
  • Ferouali, H.E., Doubabi, S., Kouhila, M., Abdenouri, N. Modelling of flat plate and V-corrugated solar air heaters operated in natural and forced convection. In: Proceedings of ECOS 2015: 28th Int. Conf. Efficiency, Cost, Optimization, Simulation and Environmental Impact of Energy Systems; 2015 June 30-july 3; Pau, France.
  • Ferouali, H.E., Doubabi, S., Kouhila, M., Abdenouri, N. Modelling of flat plate and V-corrugated solar air heaters for single and counter flow operating modes. In: Proceedings of IEEES7: 7th International Exergy, Energy and Environment Symposium; 2015 April 27-30; Valenciennes, France.
  • Beid, S.E., Doubabi, S. DSP based implementation of fuzzy output tracking control for a boost converter. IEEE transaction on industrial electronics 2014; 61: 196-209. DOI: 10.1109/TIE.2013.2242413.
  • Nouri, A, Salhi, I, Elwarraki, E, Beid, S.E., Essounbouli, N. DSP based implementation of a self-tuning fuzzy controller for three level boost converter. Electric power systems Research 2017; 146: 286-297. DOI: https://doi.org/10.1016/j.epsr.2017.01.036.
  • Zhu, Y. Multivariable System Identification for Process control. Elsevier Sciences and Technology Books 2001; 349.
  • Landau, I.D., System Identification and Control. Paris: HERMES Edition, 1993.
Year 2018, Volume: 2 Issue: 4, 260 - 276, 31.12.2018
https://doi.org/10.30521/jes.457647

Abstract

References

  • Chauhan, S, P, Kumar, A, Tekasakul, P. Application of software in solar drying systems: A review. Renewable and Sustainable Energy Review 2015; 51: 1326-1337.DOI: https://doi.org/10.1016/j.rser.2015.07.025
  • Azaizia, Z, Kooli, S, Elkhadraoui, A, Hamdi, I. Investigation of a new solar greenhouse drying system for peppers. Int. J. Hydrogen Energy 2017; 42: 8818–8826. DOI: https://doi.org/10.1016/j.ijhydene.2016.11.180
  • Aghbashlo, M, Muller, J, Mobli, J, Madaldou, A, Rafiee, S. Modeling and simulation of deep-bed solar greenhouse drying of Chamomile flowers. Drying Technology 2015; 33: 684-695. DOI: https://doi.org/10.1080/07373937.2014.981278.
  • Aghbashlo, M, Kianmehr, MN, Samimi-Akhijahani, H. Influence of drying conditions on the effective moisture diffusivity, energy of activation and energy consumption during the thin-layer drying of berberis fruit (Baerberidaceae). Energy Conversion and Management 2008; 49(10): 2865-2871. DOI: https://doi.org/10.1016/j.enconman.2008.03.009
  • Boughali, S, Benmoussa, H, Bouchekima, B, Mennouch, D, Bouguettaia, H, Bechki, D. Crop drying by indirect active hybrid solar-electrical dryer in the eastern Algerian Septentrional Sahara. Solar Energy 2009; 83(12): 2223-2232. DOI: https://doi.org/10.1016/j.solener.2009.09.006.
  • Belloulid, M.O., Hamdi, H, Mandi, L, Ouazzani, N., Solar drying of wastewater sludge: a case study in Marrakesh, Morocco. Environmental Technology (United Kingdom) 2018; 1–7. DOI: 10.1080/09593330.2017.1421713.
  • Adams, RL, Thompson, JF. Improving drying uniformity in concurrent flow tunnel dehydrator. Transaction of ASAE 1985; 23(3): 890-892. DOI: 0001-2351/85/2803-0890$0.00
  • Raouzeos, GS, Saravacos, GD. Solar drying of raising. Drying Technology 1986; 4(4): 633-649. DOI: https://doi.org/10.1080/07373938608916353.
  • Amer, BMA, Hossain, MA, Gottschalk, K. Design and performance evaluation of a new hybrid dryer for banana. Energy Conversion and Management 2010; 51: 813-820. DOI: https://doi.org/10.1016/j.enconman.2009.11.016.
  • TadahmumYassen, A, Hussain Al-Kayiem, H. Experimental investigation and evaluation of hybrid solar/thermal dryer combined with supplementary recover dryer. Solar Energy 2016; 134: 284-293. DOI: https://doi.org/10.1016/j.solener.2016.05.011.
  • Lopez-Vidana, E, Mendez-Laguna, L, Rodriguez-Ramirez, J. Efficiency of a hybrid solar-gas dryer. Solar Energy 2013; 93: 23-31. DOI: https://doi.org/10.1016/j.solener.2013.01.027.
  • Oueslati, H, Benmbrouk, S, Mami, A. Design and installation of a solar-gas tunnel dryer. The 5th Int. Renewable Energy Congress IREC 2014; 1-9. DOI: 978-1-4799-2195-9/14/$31.00.
  • Junchangpood, A, Chanvattana, V. A simulation of temperatures and velocities distribution of a hot-air steam of a rubber smoke sheet drying room using CFD. Conf. Mech. Eng. Netw. Thail 2007; 24: 1041-1047.
  • Tekasakul, P, Promtong, M. Energy efficiency enhancement of natural rubber smoking process by flow improvement using a CFD technique. Applied Energy 2008; 85(9): 878-895. DOI: https://doi.org/10.1016/j.apenergy.2008.02.004.
  • Promtong, M, Tekasakul, P. CFD study of flow in natural rubber smoking room: I. Validation with the present smoking-room. Appl. Therm. Eng 2007; 27: 2113-2121. DOI: https://doi.org/10.1016/j.applthermaleng.2006.11.009.
  • Dejchanchaiwong, R, Tirawanichakul, Y, Tirawanichakul, S, Tekasakul, P. Single-phase and multiphase models for temperature and relative humidity calculations during forced convection in a rubber-sheet drying chamber. Maejo Int. J. Sci. Technol 2014; 8(2): 207-220. DOI: 10.14456/mijst.2014.29.
  • Sonthikun, S, Chairat, P, Fardsin, K, Kirirat, P, Kumar, A, Tekasakul, P. Computational fluid dynamic analysis of an innovative design of solar-biomass hybrid dryer: An experimental validation. Renewable Energy 2016; 92: 185-191. DOI: https://doi.org/10.1016/j.renene.2016.01.095.
  • Kumar, A, Tiwari, GN. Thermal modeling of a natural convection greenhouse drying system for jiggery: an experimental validation. Solar Energy 2006; 80: 677-701. DOI: https://doi.org/10.1080/14786451.2012.724070.
  • Tiwari, G.N., Das, T., Chen, C.R., Barnwal, P. Energy and Exergy analysis of greenhouse fish drying. Int J Exergy 2009; 6: 620-636. DOI: https://doi.org/10.1504/IJEX.2009.027493.
  • Prakash, O., Kumar, A. ANFIS modeling of a natural convection greenhouse drying system for jiggery: experimental validation. Int. J. Sustain Energy 2014; 33: 316-335. DOI: https://doi.org/10.1080/14786451.2012.724070.
  • Ferouali, H.E., Doubabi, S., Kouhila, M., Abdenouri, N. Modelling of flat plate and V-corrugated solar air heaters operated in natural and forced convection. In: Proceedings of ECOS 2015: 28th Int. Conf. Efficiency, Cost, Optimization, Simulation and Environmental Impact of Energy Systems; 2015 June 30-july 3; Pau, France.
  • Ferouali, H.E., Doubabi, S., Kouhila, M., Abdenouri, N. Modelling of flat plate and V-corrugated solar air heaters for single and counter flow operating modes. In: Proceedings of IEEES7: 7th International Exergy, Energy and Environment Symposium; 2015 April 27-30; Valenciennes, France.
  • Beid, S.E., Doubabi, S. DSP based implementation of fuzzy output tracking control for a boost converter. IEEE transaction on industrial electronics 2014; 61: 196-209. DOI: 10.1109/TIE.2013.2242413.
  • Nouri, A, Salhi, I, Elwarraki, E, Beid, S.E., Essounbouli, N. DSP based implementation of a self-tuning fuzzy controller for three level boost converter. Electric power systems Research 2017; 146: 286-297. DOI: https://doi.org/10.1016/j.epsr.2017.01.036.
  • Zhu, Y. Multivariable System Identification for Process control. Elsevier Sciences and Technology Books 2001; 349.
  • Landau, I.D., System Identification and Control. Paris: HERMES Edition, 1993.
There are 26 citations in total.

Details

Primary Language English
Subjects Electrical Engineering
Journal Section Research Articles
Authors

Ahmed Zoukit 0000-0001-5406-6038

Hicham El Ferouali This is me 0000-0001-7541-4193

İssam Salhi This is me 0000-0001-8399-7827

Said Doubabi This is me 0000-0001-9947-5206

Naji Abdenouri 0000-0002-9399-5435

Publication Date December 31, 2018
Acceptance Date December 1, 2018
Published in Issue Year 2018 Volume: 2 Issue: 4

Cite

Vancouver Zoukit A, El Ferouali H, Salhi İ, Doubabi S, Abdenouri N. Mathematical modeling of an innovative hybrid solar-gas dryer. Journal of Energy Systems. 2018;2(4):260-76.

Journal of Energy Systems is the official journal of 

European Conference on Renewable Energy Systems (ECRES8756 and


Electrical and Computer Engineering Research Group (ECERG)  8753


Journal of Energy Systems is licensed under CC BY-NC 4.0