Year 2020, Volume 4 , Issue 2, Pages 58 - 70 2020-06-30

The very high annual heat demand of greenhouses is the most critical factor that increases production costs. Conventional methods are generally used to obtain the optimum temperature required for greenhouses. In these systems, greenhouse air is heated by a boiler and pipe networks are connected to it, and in this way, most of the heat energy is transferred from the greenhouse ceiling to the atmosphere. In addition, in the greenhouse, not only the air but also the soil should be heated in order not to spoil the roots of the plants. The objective of this research is to provide sustainable heating for greenhouse applications. For this purpose, an innovative heating system has been designed for greenhouse heating by using of solar energy and heat pump technologies. In this study, a new approach was presented by designing a novelty heat pump flow for the heat required in the greenhouse. With this design, not only greenhouse air but also the soil will be heated and the best conditions for the development of plants will be provided. In the system, an ethylene glycol water mixture was used to prevent damage caused by freezing. In addition, it is designed to provide sustainability with an auxiliary heater when solar radiation is insufficient. It is highly recommended to apply this presented system for all greenhouse types.
Energy efficiency, Greenhouse heating, Heat pump, Solar energy
  • [1] Max, JFJ, Horst, WJ, Mutwiwa, UN, Tantau, HJ. Effects of greenhouse cooling method on growth, fruit yield and quality of tomato (Solanum lycopersicum L.) in a tropical climate. Scientia Horticulturae 2009; 122(2): 179-186, DOI: 10.1016/j.scienta.2009.05.007
  • [2] Canakci, M, Emekli, NY, Bilgin, S, Caglayan, N. Heating requirement and its costs in greenhouse structures: A case study for Mediterranean region of Turkey. Renewable and Sustainable Energy Reviews 2013; 24: 483-490, DOI: 10.1016/j.rser.2013.03.026
  • [3] Ahamed, SM, Guo, H, Tanino, K. Energy saving techniques for reducing the heating cost of conventional greenhouses. Biosystems Engineering 2019; 178: 9-33, DOI: 10.1016/j.biosystemseng.2018.10.017
  • [4] Yatarkalkmaz, MM, Özdemir, MB. The calculation of greenhouse gas emissions of a family and projections for emission reduction. Journal of Energy Systems 2019; 3(3): 96-110, DOI: 10.30521/jes.566516
  • [5] Esen, M, Yuksel, T. Experimental evaluation of using various renewable energy sources for heating a greenhouse. Energy and Buildings 2013; 65: 340-351, DOI: 10.1016/j.enbuild.2013.06.018
  • [6] Attar, I, Farhat, A. Efficiency evaluation of a solar water heating system applied to the greenhouse climate. Solar Energy 2015; 119: 212-224, DOI: 10.1016/j.solener.2015.06.040
  • [7] Yildirim, N, Bilir, L. Evaluation of a hybrid system for a nearly zero energy greenhouse. Energy Conversion and Management 2017; 148: 1278-1290, DOI: 10.1016/j.enconman.2017.06.068
  • [8] Aye, L, Fuller, RJ, Canal, A. Evaluation of a heat pump system for greenhouse heating. International Journal of Thermal Sciences 2010; 49: 202-208, DOI: 10.1016/j.ijthermalsci.2009.07.002
  • [9] Joudi, KA, Farhan, AA, Greenhouse heating by solar air heaters on the roof. Renewable Energy 2014; 72: 406-414, DOI: 10.1016/j.renene.2014.07.025
  • [10] Mohsenipour, M, Ebadollahi, M, Rostamzadeh, H, Amidpour, M. Design and evaluation of a solar-based trigeneration system for a nearly zero energy greenhouse in arid region. Journal of Cleaner Production 2020; 254: 119990, DOI: 10.1016/j.jclepro.2020.119990
  • [11] Baddadi, S, Bouadila, S, Ghorbel, W, Guizani, A. Autonomous greenhouse microclimate through hydroponic design and refurbished thermal energy by phase change material. Journal of Cleaner Production 2018; 211: 360-379, DOI: 10.1016/j.jclepro.2018.11.192
  • [12] Zhang, L, Xu, P, Mao, J, Tang, X, Li, Z, Shi, J. A low cost seasonal solar soil heat storage system for greenhouse heating: Design and pilot study. Applied Energy 2015; 156: 213–222, DOI: 10.1016/j.apenergy.2015.07.036
  • [13] Yuksel An. Sera Yapım Tekniği. İstanbul, TURKEY: Hasat Yayıncılık Ltd. Şti., 1995.
  • [14] Hatfield, JL, Prueger, JH. Temperature extremes: Effect on plant growth and development. Weather and Climate Extremes 2015; 10: 4-10, DOI: 10.1016/j.wace.2015.08.001
  • [15] Pittenger D. California Master Gardener Handbook. Second ed. Division of Agriculture and Natural Resources, 2014, USA.
  • [16] Ozturk, AH. Antalya iklimi koşullarında sera ısıtma amacıyla güneş enerjisinin duyulur ısı olarak depolanması için tasarım değişkenlerinin belirlenmesi [Determination of Design Variables for the Storage of Solar Energy as Sensible Heat for Greenhouse Heating in Antalya Climate Conditions] Tesisat Mühendisliği 2012; 129: 38-50
  • [17] Zare, D, Minaei, S, Mohamad, ZM, Khoshtaghaza, MH. Computer simulation of rough rice drying in a batch dryer. Energy Conversion and Management 2006; 47: 3241–3254, DOI: 10.1016/j.enconman.2006.02.021
  • [18] Koşan, M, Demirtaş, M, Aktaş, M, Dişli, E. Performance analyses of sustainable PV/T assisted heat pump drying system. Solar Energy 2020; 199: 657-672, DOI: 10.1016/j.solener.2020.02.040
  • [19] Karim, MA, Hawlader, MNA. Performance evaluation of a v-groove solar air collector for drying applications. Applied Thermal Engineering 2006; 26(1): 121-130, DOI: 10.1016/j.applthermaleng.2005.03.017
  • [20] Karaca, G, Dolgun, EC, Koşan, M, Aktaş, M. Photovoltaic-Thermal solar energy system design for dairy industry. Journal of Energy Systems 2019; 3(2): 86-95, DOI: 10.30521/jes.565174
  • [21] Aktaş, M, Koşan, M, Arslan, E, Tuncer, AD. Designing a novel solar-assisted heat pump system with modification of a thermal energy storage unit. Proc IMechE Part A: J Power and Energy 2019; 233(5): 588-603, DOI: 10.1177/0957650919847934
  • [22] Othman, MY, Tabook, MAS, Sopian, K, Roslan, MH, Ibrahim, Z. An experimental study of PV/T Combi with water and air heating system. Journal of Novel Applied Sciences 2015; 4(6): 725-731, ISSN 2322–5149
  • [23] Wang, G, Quan, Z, Zha, Y, Sun, C, Tong, J. Performance studies on a novel solar PV/T-air dual heat source heat pump system. Procedia Engineering 2015; 121: 771–778, DOI: 10.1016/j.proeng.2015.09.029
  • [24] Bambrook, SM, Sproul, AB. Maximising the energy output of a PVT air system. Solar Energy 2012; 86(6): 1857–1871, DOI: 10.1016/j.solener.2012.02.038
  • [25] Dubey, S, Tiwari, GN. Thermal modeling of a combined system of photovoltaic thermal (PV/T) solar water heater. Solar Energy 2008; 82(7): 602–612, DOI: 10.1016/j.solener.2008.02.005
  • [26] Renato, L, Marco, N. Photovoltaic/Thermal (PV/T) ground dual source heat pump: optimum energy and economic sizing based on performance analysis, Energy & Buildings 2020; 211: 109800, DOI: 10.1016/j.enbuild.2020.109800
  • [27] Shao, N, Ma, L, Zhang, J. Experimental study on electrical and thermal performance and heat transfer characteristic of PV/T roof in summer. Applied Thermal Engineering 2019; 162: 114276, DOI: 10.1016/j.applthermaleng.2019.114276
  • [28] Jinzhi, Z, Zishang, Z, Xudong, Z, Yanping, Y, Yi, F, Steve, M. Theoretical and experimental study of a novel solar indirect-expansion heat pump system employing mini channel PV/T and thermal panels. Renewable Energy 2019; 151: 674-686, DOI: 10.1016/j.renene.2019.11.054
  • [29] Simonetti, R, Molinaroli, L, Manzolini, G. Experimental and analytical study of an innovative integrated dual-source evaporator for solar-assisted heat pumps. Solar Energy 2019; 194: 939–951, DOI: 10.1016/j.solener.2019.10.070
  • [30] Nina, S, Liangdong, M, Jili, Z. Experimental investigation on the performance of direct-expansion roof-PV/T heat pump system. Energy 2020; 195: 116959, DOI: 10.1016/j.energy.2020.116959
  • [31] Reda, H, Emam, H, Ming L, Yilian T. The evacuated tube solar collector assisted heat pump for heating greenhouses. Energy & Buildings 2018; 169: 305-318, DOI: 10.1016/j.enbuild.2018.03.072
  • [32] Liua, Z, Tan, H, Li, Z. Heating and Cooling Performances of River-Water Source Heat Pump System for Energy Station in Shanghai. Procedia Engineering 2017; 205: 4074–4081, DOI: 10.1016/j.proeng.2017.09.898
  • [33] Mi, P, Ma, L, Zhang J. Integrated optimization study of hot water supply system with multi-heat source for the public bath based on PVT heat pump and water source heat pump. Applied Thermal Engineering 2020; 176: 115146, DOI: 10.1016/j.applthermaleng.2020.115146
  • [34] Wang, Z, Wang, L, Ma, A, Liang, K, Song, Z, Feng, L. Performance evaluation of ground water-source heat pump system with a fresh air pre-conditioner using ground water. Energy Conversion and Management 2019; 188: 250–261, DOI: 10.1016/j.enconman.2019.03.061.
Primary Language en
Subjects Engineering, Mechanical, Engineering, Multidisciplinary
Journal Section Research Articles
Authors

Orcid: 0000-0001-7311-9342
Author: Meltem KOŞAN (Primary Author)
Institution: GAZİ ÜNİVERSİTESİ
Country: Turkey


Orcid: 0000-0003-1979-2733
Author: Ahmet Eren AKKOÇ
Institution: GAZİ ÜNİVERSİTESİ
Country: Turkey


Orcid: 0000-0002-3613-7370
Author: Ebubekir DİŞLİ
Institution: Gemak Food Industry Machinery
Country: Turkey


Orcid: 0000-0003-1187-5120
Author: Mustafa AKTAŞ
Institution: GAZİ ÜNİVERSİTESİ
Country: Turkey


Dates

Publication Date : June 30, 2020

Bibtex @research article { jes740587, journal = {Journal of Energy Systems}, issn = {}, eissn = {2602-2052}, address = {}, publisher = {Erol KURT}, year = {2020}, volume = {4}, pages = {58 - 70}, doi = {10.30521/jes.740587}, title = {Design of an innovative PV/T and heat pump system for greenhouse heating}, key = {cite}, author = {Koşan, Meltem and Akkoç, Ahmet Eren and Di̇şli̇, Ebubekir and Aktaş, Mustafa} }
APA Koşan, M , Akkoç, A , Di̇şli̇, E , Aktaş, M . (2020). Design of an innovative PV/T and heat pump system for greenhouse heating . Journal of Energy Systems , 4 (2) , 58-70 . DOI: 10.30521/jes.740587
MLA Koşan, M , Akkoç, A , Di̇şli̇, E , Aktaş, M . "Design of an innovative PV/T and heat pump system for greenhouse heating" . Journal of Energy Systems 4 (2020 ): 58-70 <https://dergipark.org.tr/en/pub/jes/issue/54197/740587>
Chicago Koşan, M , Akkoç, A , Di̇şli̇, E , Aktaş, M . "Design of an innovative PV/T and heat pump system for greenhouse heating". Journal of Energy Systems 4 (2020 ): 58-70
RIS TY - JOUR T1 - Design of an innovative PV/T and heat pump system for greenhouse heating AU - Meltem Koşan , Ahmet Eren Akkoç , Ebubekir Di̇şli̇ , Mustafa Aktaş Y1 - 2020 PY - 2020 N1 - doi: 10.30521/jes.740587 DO - 10.30521/jes.740587 T2 - Journal of Energy Systems JF - Journal JO - JOR SP - 58 EP - 70 VL - 4 IS - 2 SN - -2602-2052 M3 - doi: 10.30521/jes.740587 UR - https://doi.org/10.30521/jes.740587 Y2 - 2020 ER -
EndNote %0 Journal of Energy Systems Design of an innovative PV/T and heat pump system for greenhouse heating %A Meltem Koşan , Ahmet Eren Akkoç , Ebubekir Di̇şli̇ , Mustafa Aktaş %T Design of an innovative PV/T and heat pump system for greenhouse heating %D 2020 %J Journal of Energy Systems %P -2602-2052 %V 4 %N 2 %R doi: 10.30521/jes.740587 %U 10.30521/jes.740587
ISNAD Koşan, Meltem , Akkoç, Ahmet Eren , Di̇şli̇, Ebubekir , Aktaş, Mustafa . "Design of an innovative PV/T and heat pump system for greenhouse heating". Journal of Energy Systems 4 / 2 (June 2020): 58-70 . https://doi.org/10.30521/jes.740587
AMA Koşan M , Akkoç A , Di̇şli̇ E , Aktaş M . Design of an innovative PV/T and heat pump system for greenhouse heating. JES. 2020; 4(2): 58-70.
Vancouver Koşan M , Akkoç A , Di̇şli̇ E , Aktaş M . Design of an innovative PV/T and heat pump system for greenhouse heating. Journal of Energy Systems. 2020; 4(2): 58-70.