Research Article
BibTex RIS Cite
Year 2020, Volume: 4 Issue: 3, 88 - 95, 30.09.2020
https://doi.org/10.30521/jes.738363

Abstract

References

  • [1] Sharma, R.C., Thermodynamic analysis and phase equilibria calculations for the Zn-Te, Zn-Se and Zn-S systems, J. Cryst. Growth, 1988, 88(2), 193-204.
  • [2] Feutelais, Y., Haloui, A., Legendre, B., A thermodynamic evaluation of the Te-Zn system, Journal of Phase Equilibria, 1997, 18(1), 48-61.
  • [3] Steininger, J., Strauss, A.J., Brebrick, R.F., Phase diagram of the Zn-Cd-Te ternary system, J. Electrochem. Soc.: Solid State Science, 1970, 117(10), 1305-1309.
  • [4] Suthar, D., Himanshu, Patel, S.L., Chander, S., Kannan, M.D., Dhaka, M.S., Enhanced physicochemical properties of ZnTe thin films as potential buffer layer in solar cell applications, Solid State Sciences (2020), doi: https://doi.org/10.1016/j.solidstatesciences.2020.106346.
  • [5] Haynes, W.M. (ed), CRC handbook of chemistry and physics (2nd ed.). Boca Raton, FL, USA: CRC Press, 2011, 12-80.
  • [6] Li, J., Diercks, D.R., Ohno, T.R., Warren, C.W., Lonergan, M.C., Beach, J.D., Wolden. C.A., Controlled activation of ZnTe:Cu contacted CdTe solar cells using rapid thermal processing, Sol. Energy Mater. Sol. Cells., 2015, 133, 208-215.
  • [7] Gessert, T.A., Asher, S., Johnston, S., Young, M., Dippo, P., Corwine, C., Analysis of CdS/CdTe devices incorporating a ZnTe:Cu/Ti Contact, Thin Solid Films, 2007, 515, 6103-6106.
  • [8] Hussain, T., Al-Kuhali, M.F., Durrani, S.M.A., Qayyum, H.A., Influence of angle deposition on the properties of ZnTe thin films prepared by thermal evaporation, Ceram. Int., 2018, 44(9), 10130-10140.
  • [9] Ashwini, P., Mani, J., Electronic and structural, properties of ZnTe using density functional theory (DFT), International Research Journal of Engineering and Technology (IRJET), 2018, 5(7), 2650- 2654.
  • [10] Feng, L., Wu, L., Lei, Z., Li, W., Cai, Y., Cai, W., Zhang, J., Luo, Q., Li, B., Zheng, J., Studies of key technologies for large area CdTe thin film solar cells, Thin Solid Films, 2007, 515, 5792-5797.
  • [11] Faulkner, B.R., Burst, J.M., Ohno, T.R., Perkins, C.L., To B., Gessert, T.A., ZnTe:Cu film properties and their impact on CdS/CdTe devices, 40th Photovoltaic Specialist Conference (PVSC) (8-13 June 2014, IEEE, Denver, Colorado, USA), 2014, 2321-2325.
  • [12] Uličná, S., Isherwood, P.J.M., Kaminski, P.M., Walls, J.M., Li, J., Wolden, C.A., Development of ZnTe as a back-contact material for thin film cadmium telluride solar cells, Vacuum, 2017, 139,159-163.
  • [13] Jie, J., Zhang, W., Bello, I., Lee, C.S., Lee, S.T., One-dimensional II-VI nanostructures: synthesis, properties and optoelectronic applications, Nano Today, 2010, 5(4), 313-336.
  • [14] Cao, Y.L., Liu, Z.T., Chen, L.M., Tang, Y.B., Luo, L.B., Jie, J.S., Zhang, W.J., Lee, S.T., Lee, C.S., Single-crystalline ZnTe nanowires for application as high-performance green/ultraviolet photodetector, Opt. Express, 2011, 19(7), 6100-6108.
  • [15] Zhang, J., Rowland, C., Liu, Y., Xiong, H., Kwon, S., Shevchenko, E., Schaller, R.D., Prakapenka, V.B., Tkachev, S., Rajh, T., Evolution of self-assembled ZnTe magic-sized nanoclusters, J. Am. Chem. Soc., 2015, 137(2), 742-749.
  • [16] Kamran, M.A., Novel low-temperature synthesis and optical properties of 1D-ZnTe nanowires, Journal of Science: Advanced Materials and Devices, 2018, 3(2), 226-229.
  • [17] Haloui, A., Feutelais, Y., Legendre, B., Experimental study of the ternary system Cd-Te-Zn., Journal of Alloys and Compounds, 1997, 260(1-2), 179-192.
  • [18] Yu, T.C., Brebrick, R.F., The Hg-Cd-Zn-Te Phase Diagram, J. Phase Equilibria, 1992, 13, 476-496.
  • [19] Greenberg, J.H., PeTeX phase equilibrium and vapor pressure scanning of non-stoichiometry in the CdeZneTe system, Prog. Cryst. Growth Charact. Mater., 2003, 47, 196-238.
  • [20] Andersson, J-O., Helander, T., Hdghmd, L., Shi, P., Sundman, B., THERMO-CALC & DICTRA, Computational tools for materials science, Calphad, 2002, 26 (2), 273-312.
  • [21] Introduction to Thermo-Calc, Thermo-Calc Documentation Set Thermo-Calc Version 2017a, http://www.thermocalc.com/media/40962/thermo-calc-documentation-set.pdf Page 97, Accessed at 5 September 2019.
  • [22] The CALPHAD methodology, Introduction to Thermo-Calc. http://www.thermocalc.com, 9/18/2016, Accessed at 5 September 2019.
  • [23] Computational Thermodynamics. Calculation of Phase Diagrams using the CALPHAD Method. http://www.calphad.com/calphad_method.html. 8/16/2019, Accessed at 5 September 2019.
  • [24] Boutwell, B.A., Thompson, R.G., Saunders N, Mannan, S.K., deBarbadillo, J.J., Phase formation modeling of an alloy casting using computational thermodynamics, 4th International Symposium on Superalloys and Derivatives (15-18 June 1997, Pittsburgh, Pennsylvania), 1997.
  • [25] Ikhmayies. S.J., Phase Diagram of In-P Binary System. In: Li J, Zhang M, Li B, Monteiro SN, Ikhmayies SJ, Kalay YE, Hwang J, Escobedo-Diaz JP, Carpenter JS, Brown AD, editors. Characterization of Minerals, Metals and Materials 2020, Cham, Switzerland: Springer International Publishing, 2020. pp. 283-288.
  • [26] Ikhmayies, S.J., Phase Diagrams of Al-Si System. In: Wang T, Chen X, Guillen DP, Zhang L, Sun Z, Wang C, Haque N, Howarter JA, Neelameggham NR, Ikhmayies S, Smith YR, Tafaghodi L, Pandey A, editors. Energy Technology 2019: Carbon Dioxide Management and Other Technologies. Cham, Switzerland: Springer International Publishing, 2019. pp. 231-237.
  • [27] Ikhmayies, S.J., Thermo-Calc of the Phase Diagram of the Fe-Si System. In: Sun Z, Wang C, Guillen DP, Neelameggham NR, Zhang L, Howarter JA, Wang T, Olivetti E, Zhang M, Verhulst D, Guan X, Anderson A, Ikhmayies S, Smith YR, Pandey A, Pisupati SV, Lu H, editors. Energy Technology 2018: Carbon Dioxide Management and Other Technologies. Cham, Switzerland: Springer International Publishing, 2018. pp. 471-477.
  • [28] Ikhmayies, S.J., Thermo-Calc of the Phase Diagram of Calcium Silicon (Ca-Si) System. In: Sun Z, Wang C, Guillen DP, Neelameggham NR, Zhang L, Howarter JA, Wang T, Olivetti E, Zhang M, Verhulst D, Guan X, Anderson A, Ikhmayies S, Smith YR, Pandey A, Pisupati SV, Lu H, editors. Energy Technology 2018: Carbon Dioxide Management and Other Technologies. Cham, Switzerland: Springer International Publishing, 2018. pp. 489-494.
  • [29] Ikhmayies, S.J., Thermo-Calc of the Phase Diagrams of the Nb-N System. In: Materials Society T, editors. TMS 2018 147th Annual Meeting & Exhibition Supplemental Proceedings. Cham, Switzerland: Springer International Publishing, 2018. pp. 755-760.
  • [30] Ikhmayies S.J., Phase Analysis of the Si-O2 System. In: Zhang L, Drelich JW, Neelameggham NR, Guillen DP, Haque N, Zhu J, Sun Z, Wang T, Howarter JA, Tesfaye F, Ikhmayies S, Olivetti E, Kennedy MW, editors. Energy Technology 2017: Carbon Dioxide Management and Other Technologies. Cham, Switzerland: Springer International Publishing, 2017. pp. 333-342.
  • [31] Periodic Table, Royal Society of Chemistry, 2019, http://www.rsc.org/periodic-table/. Accessed at 7 September 2019.
  • [32] Glazov, V.M., Pavlova, L.M., Volumetric effects of ZnTe, CdTe and HgTe compounds at melting and subsequent heating, Scandinavian Journal of Metallurgy, 2001, 30(6), 379–387.
  • [33] Haynes, William M, editors. CRC Handbook of Chemistry and Physics, 92nd ed., Boca Raton, FL, CRC Press, 2011. pp. 12.80.

Using thermo-calc software to produce the phase diagram of Zn-Te system

Year 2020, Volume: 4 Issue: 3, 88 - 95, 30.09.2020
https://doi.org/10.30521/jes.738363

Abstract

In this work, Thermo-Calc software 2019b is used to recalculate the liquidus-solidus phase diagram of the Zn-Te binary system. The produced phase diagram is in good agreement with the experimental results found in the literature, and it shows five stable phases, which are elemental Zn, elemental Te, ZnTe compound, Zn liquid, and Te liquid. A monotectic reaction is observed at monotectic temperature of 1479.14 K and 59.369 Zn mole percent, and a miscibility gap is found between 59.369 and 97.2781 Zn mole percent above the monotectic temperature. Moreover, there are two eutectic reactions at the Te and Zn terminals. From this phase diagram, the maximum solubility of ZnTe in liquid Zn is determined as 2.7219% at 1479.14 K. The melting points of Te, Zn, and stoichiometic ZnTe are found to be 722.587 ± 0.025 K, 692.680 ± 0.025 K, and 1568.400 ± 0.025 K respectively. These results are important for the development of preparation methods of ZnTe, which is important for several industries including solar cells.

References

  • [1] Sharma, R.C., Thermodynamic analysis and phase equilibria calculations for the Zn-Te, Zn-Se and Zn-S systems, J. Cryst. Growth, 1988, 88(2), 193-204.
  • [2] Feutelais, Y., Haloui, A., Legendre, B., A thermodynamic evaluation of the Te-Zn system, Journal of Phase Equilibria, 1997, 18(1), 48-61.
  • [3] Steininger, J., Strauss, A.J., Brebrick, R.F., Phase diagram of the Zn-Cd-Te ternary system, J. Electrochem. Soc.: Solid State Science, 1970, 117(10), 1305-1309.
  • [4] Suthar, D., Himanshu, Patel, S.L., Chander, S., Kannan, M.D., Dhaka, M.S., Enhanced physicochemical properties of ZnTe thin films as potential buffer layer in solar cell applications, Solid State Sciences (2020), doi: https://doi.org/10.1016/j.solidstatesciences.2020.106346.
  • [5] Haynes, W.M. (ed), CRC handbook of chemistry and physics (2nd ed.). Boca Raton, FL, USA: CRC Press, 2011, 12-80.
  • [6] Li, J., Diercks, D.R., Ohno, T.R., Warren, C.W., Lonergan, M.C., Beach, J.D., Wolden. C.A., Controlled activation of ZnTe:Cu contacted CdTe solar cells using rapid thermal processing, Sol. Energy Mater. Sol. Cells., 2015, 133, 208-215.
  • [7] Gessert, T.A., Asher, S., Johnston, S., Young, M., Dippo, P., Corwine, C., Analysis of CdS/CdTe devices incorporating a ZnTe:Cu/Ti Contact, Thin Solid Films, 2007, 515, 6103-6106.
  • [8] Hussain, T., Al-Kuhali, M.F., Durrani, S.M.A., Qayyum, H.A., Influence of angle deposition on the properties of ZnTe thin films prepared by thermal evaporation, Ceram. Int., 2018, 44(9), 10130-10140.
  • [9] Ashwini, P., Mani, J., Electronic and structural, properties of ZnTe using density functional theory (DFT), International Research Journal of Engineering and Technology (IRJET), 2018, 5(7), 2650- 2654.
  • [10] Feng, L., Wu, L., Lei, Z., Li, W., Cai, Y., Cai, W., Zhang, J., Luo, Q., Li, B., Zheng, J., Studies of key technologies for large area CdTe thin film solar cells, Thin Solid Films, 2007, 515, 5792-5797.
  • [11] Faulkner, B.R., Burst, J.M., Ohno, T.R., Perkins, C.L., To B., Gessert, T.A., ZnTe:Cu film properties and their impact on CdS/CdTe devices, 40th Photovoltaic Specialist Conference (PVSC) (8-13 June 2014, IEEE, Denver, Colorado, USA), 2014, 2321-2325.
  • [12] Uličná, S., Isherwood, P.J.M., Kaminski, P.M., Walls, J.M., Li, J., Wolden, C.A., Development of ZnTe as a back-contact material for thin film cadmium telluride solar cells, Vacuum, 2017, 139,159-163.
  • [13] Jie, J., Zhang, W., Bello, I., Lee, C.S., Lee, S.T., One-dimensional II-VI nanostructures: synthesis, properties and optoelectronic applications, Nano Today, 2010, 5(4), 313-336.
  • [14] Cao, Y.L., Liu, Z.T., Chen, L.M., Tang, Y.B., Luo, L.B., Jie, J.S., Zhang, W.J., Lee, S.T., Lee, C.S., Single-crystalline ZnTe nanowires for application as high-performance green/ultraviolet photodetector, Opt. Express, 2011, 19(7), 6100-6108.
  • [15] Zhang, J., Rowland, C., Liu, Y., Xiong, H., Kwon, S., Shevchenko, E., Schaller, R.D., Prakapenka, V.B., Tkachev, S., Rajh, T., Evolution of self-assembled ZnTe magic-sized nanoclusters, J. Am. Chem. Soc., 2015, 137(2), 742-749.
  • [16] Kamran, M.A., Novel low-temperature synthesis and optical properties of 1D-ZnTe nanowires, Journal of Science: Advanced Materials and Devices, 2018, 3(2), 226-229.
  • [17] Haloui, A., Feutelais, Y., Legendre, B., Experimental study of the ternary system Cd-Te-Zn., Journal of Alloys and Compounds, 1997, 260(1-2), 179-192.
  • [18] Yu, T.C., Brebrick, R.F., The Hg-Cd-Zn-Te Phase Diagram, J. Phase Equilibria, 1992, 13, 476-496.
  • [19] Greenberg, J.H., PeTeX phase equilibrium and vapor pressure scanning of non-stoichiometry in the CdeZneTe system, Prog. Cryst. Growth Charact. Mater., 2003, 47, 196-238.
  • [20] Andersson, J-O., Helander, T., Hdghmd, L., Shi, P., Sundman, B., THERMO-CALC & DICTRA, Computational tools for materials science, Calphad, 2002, 26 (2), 273-312.
  • [21] Introduction to Thermo-Calc, Thermo-Calc Documentation Set Thermo-Calc Version 2017a, http://www.thermocalc.com/media/40962/thermo-calc-documentation-set.pdf Page 97, Accessed at 5 September 2019.
  • [22] The CALPHAD methodology, Introduction to Thermo-Calc. http://www.thermocalc.com, 9/18/2016, Accessed at 5 September 2019.
  • [23] Computational Thermodynamics. Calculation of Phase Diagrams using the CALPHAD Method. http://www.calphad.com/calphad_method.html. 8/16/2019, Accessed at 5 September 2019.
  • [24] Boutwell, B.A., Thompson, R.G., Saunders N, Mannan, S.K., deBarbadillo, J.J., Phase formation modeling of an alloy casting using computational thermodynamics, 4th International Symposium on Superalloys and Derivatives (15-18 June 1997, Pittsburgh, Pennsylvania), 1997.
  • [25] Ikhmayies. S.J., Phase Diagram of In-P Binary System. In: Li J, Zhang M, Li B, Monteiro SN, Ikhmayies SJ, Kalay YE, Hwang J, Escobedo-Diaz JP, Carpenter JS, Brown AD, editors. Characterization of Minerals, Metals and Materials 2020, Cham, Switzerland: Springer International Publishing, 2020. pp. 283-288.
  • [26] Ikhmayies, S.J., Phase Diagrams of Al-Si System. In: Wang T, Chen X, Guillen DP, Zhang L, Sun Z, Wang C, Haque N, Howarter JA, Neelameggham NR, Ikhmayies S, Smith YR, Tafaghodi L, Pandey A, editors. Energy Technology 2019: Carbon Dioxide Management and Other Technologies. Cham, Switzerland: Springer International Publishing, 2019. pp. 231-237.
  • [27] Ikhmayies, S.J., Thermo-Calc of the Phase Diagram of the Fe-Si System. In: Sun Z, Wang C, Guillen DP, Neelameggham NR, Zhang L, Howarter JA, Wang T, Olivetti E, Zhang M, Verhulst D, Guan X, Anderson A, Ikhmayies S, Smith YR, Pandey A, Pisupati SV, Lu H, editors. Energy Technology 2018: Carbon Dioxide Management and Other Technologies. Cham, Switzerland: Springer International Publishing, 2018. pp. 471-477.
  • [28] Ikhmayies, S.J., Thermo-Calc of the Phase Diagram of Calcium Silicon (Ca-Si) System. In: Sun Z, Wang C, Guillen DP, Neelameggham NR, Zhang L, Howarter JA, Wang T, Olivetti E, Zhang M, Verhulst D, Guan X, Anderson A, Ikhmayies S, Smith YR, Pandey A, Pisupati SV, Lu H, editors. Energy Technology 2018: Carbon Dioxide Management and Other Technologies. Cham, Switzerland: Springer International Publishing, 2018. pp. 489-494.
  • [29] Ikhmayies, S.J., Thermo-Calc of the Phase Diagrams of the Nb-N System. In: Materials Society T, editors. TMS 2018 147th Annual Meeting & Exhibition Supplemental Proceedings. Cham, Switzerland: Springer International Publishing, 2018. pp. 755-760.
  • [30] Ikhmayies S.J., Phase Analysis of the Si-O2 System. In: Zhang L, Drelich JW, Neelameggham NR, Guillen DP, Haque N, Zhu J, Sun Z, Wang T, Howarter JA, Tesfaye F, Ikhmayies S, Olivetti E, Kennedy MW, editors. Energy Technology 2017: Carbon Dioxide Management and Other Technologies. Cham, Switzerland: Springer International Publishing, 2017. pp. 333-342.
  • [31] Periodic Table, Royal Society of Chemistry, 2019, http://www.rsc.org/periodic-table/. Accessed at 7 September 2019.
  • [32] Glazov, V.M., Pavlova, L.M., Volumetric effects of ZnTe, CdTe and HgTe compounds at melting and subsequent heating, Scandinavian Journal of Metallurgy, 2001, 30(6), 379–387.
  • [33] Haynes, William M, editors. CRC Handbook of Chemistry and Physics, 92nd ed., Boca Raton, FL, CRC Press, 2011. pp. 12.80.
There are 33 citations in total.

Details

Primary Language English
Subjects Material Production Technologies
Journal Section Research Articles
Authors

Shadia Ikhmayies 0000-0002-2684-3300

Publication Date September 30, 2020
Acceptance Date August 30, 2020
Published in Issue Year 2020 Volume: 4 Issue: 3

Cite

Vancouver Ikhmayies S. Using thermo-calc software to produce the phase diagram of Zn-Te system. JES. 2020;4(3):88-95.

Journal of Energy Systems is the official journal of 

European Conference on Renewable Energy Systems (ECRES8756 and


Electrical and Computer Engineering Research Group (ECERG)  8753


Creative Commons License JES is licensed to the public under a Creative Commons Attribution 4.0 license.