Research Article
BibTex RIS Cite
Year 2020, Volume: 4 Issue: 4, 161 - 178, 31.12.2020
https://doi.org/10.30521/jes.737264

Abstract

References

  • [1] Gudey,S.K., & Gupta, R.,Second order sliding mode control for a single phase voltage source inverter, TENCON 2014 IEEE Region 10 Conference; (22-25 October 2014, Bangkok, Thailand), 2014, IEEE, 1-6, DOI: 10.1109/TENCON.2014.7022439.
  • [2] Delghavi, M.B., Shoja-Majidabad, S., & Yazdani, A., Fractional-order sliding-mode control of islanded distributed energy resource systems, IEEE Transactions Sustainable Energy, 2016, 7(4), 1482-1491, DOI: 10.1109/TSTE.2016.2564105.
  • [3] Sudhakar, B., & Satish Kumar, G.V.E.S., Co-simulation of sliding mode control of single phase grid connected lcl filtered voltage source inverter using LabVIEW and multisim, IEEE Region 10 Conference (TENCON)(22-25 Nov. 2016,Singapore), 2016, IEEE, 311-315, DOI:10.1109/TENCON.2016.7848013.
  • [4] Marripudi, S., Gudey, S.K., & Gujju, G.R., Analysis and design of sliding mode control for MPPT based PV system with a battery storage,14th IEEE India Council International Conference (INDICON) (15-17 December 2017, Roorkee, India),2017, IEEE, 1-6, DOI: 10.1109/INDICON.2017.8487481.
  • [5] Jian, S., Zhitao, L., & Hongye, S., A second-order sliding mode control design for bidirectional DC-DC converter, 36th Chinese Control Conference (CCC) (26-28 July 2017, Dalian, China), 2017, IEEE, 9181-9186, DOI:10.23919/ChiCC.2017.8028819.
  • [6] Hou, B., Liu, J., Dong, F., Wang, M., & Mu, A., Sliding mode control strategy of voltage source inverter based on load current sliding mode observer, IEEE 8th International Power Electronics and Motion Control Conference (IPEMC-ECCE Asia) (22-26 May 2016, Hefei, China), 2016, IEEE, 1269-1273,DOI:10.1109/IPEMC.2016.7512471.
  • [7] Incremona, G.P., Rubagotti, M., & Ferrara, A., Sliding mode control of constrained nonlinear systems, IEEE Transactions on Automatic Control, 2017, 62(6), 2965-2972, DOI:10.1109/TAC.2016.2605043.
  • [8] Nagaboina, V.K., & Gudey, S.K.,Design and analysis of a three phase transformerless hybrid series active power filter based on sliding mode control using PQ- theory and stationary reference frames, Serbian Journal of Electrical Engineering, 2019, 16(3), 289-310, DOI: 10.2298/SJEE1903289N.
  • [9] Chafekar, N., Mate, U.M., Kurode, S.R., & Vyawahare, V., A Design and implementation of fractional order sliding mode controller for DC-DC buck converter, Fifth Indian Control Conference (ICC) (9-11 Jan. 2019, New Delhi, India), 2019, IEEE, 201-206, DOI: 10.1109/INDIANCC.2019.8715589.
  • [10] Chen, Y., Petras, I., & Xue, D., Fractional order control - A tutorial, American Control Conference(10-12 June 2009,St. Louis, MO, USA), 2009, IEEE, 1397-1411, DOI:10.1109/ACC.2009.5160719,
  • [11] Buchade, P.C., Vyawahare, V.A., & Bhole, V.V., Fractional-order control of voltage source inverter (VSI) using Bode's ideal transfer function,2014 International Conference on Circuits Systems, Communication and Information Technology Applications (CSCITA) (4-5 April 2014, Mumbai, India), 2014, IEEE, 403-407, DOI: 10.1109/CSCITA.2014.6839294.
  • [12] Takamatsu, T., Kubo, K., & Ohmori, H., Design of fractional order sliding mode controller via non-integer order back stepping by fractional order derivative of Lyapnov function, Proceedings of International Conference on Advanced Mechatronic Systems (10-12 Aug. 2014, Kumamoto, Japan), 2014, IEEE, 171-174, DOI: 10.1109/ICAMechS.2014.6911645.
  • [13] Zhu, Q., Wang, W., & He, H., Speed control system of induction motor based on fractional order control and internal model decoupling, IEEE International Power Electronics and Application Conference and Exposition (PEAC)(4-7 Nov. 2018,Shenzhen, China), 2018, IEEE, 1-6, DOI: 10.1109/PEAC.2018.8590567.
  • [14] Kumar K.V.K.S.S, Rao, B.V, & Kumar, G.V.E.S., Fractional order PLL based sensorless control of PMSM with sliding mode observer, International Conference on Power, Instrumentation, Control and Computing (PICC)(18-20 Jan. 2018, Government Engineering College, Thirussur, Kerela), 2018, IEEE, 1-6, DOI: 10.1109/PICC.2018.8384774.
  • [15] Zeng, F., Shu, H., Zhu, T., Swe, T., & Yang, B., Fractional-order feedback linearization sliding-mode control design for grid-connected PV inverters, IEEE 3rd International Electrical and Energy Conference (CIEEC)(7-9 Sept. 2019,Beijing, China), 2019, IEEE, 874-878,DOI: 10.1109/CIEEC47146.2019.CIEEC-2019334.
  • [16] Calderon, A, J., B., M., Vinagre & Feliu, V., Fractional Sliding Mode Controlof a DC-DC Buck Converter with Application to DC Motor Drives, ICAR 2003, The 11th Inter. Conf. on Advanced Robotics, Coimbra, Portugal, 2003, IEEE, 252-257.
  • [17] Ningning, Y., Chaojun, W., Rong, J., & Chongxin L., Fractional-Order Terminal Sliding-Mode Control for Buck DC/DC Converter. Mathematical Problems in Engineering, 2016, Hindawi, 1-7, DOI: 10.1155/2016/6935081.
  • [18] Wang, J., Xu, D., Zhou, H., Bai, A., & Lu, W., High-performance fractional order terminal sliding mode control strategy for DC-DC Buck converter, PLoS ONE, 2017, 12(10), e0187152. DOI: 10.1371/journal.pone.0187152.
  • [19] Mudaliyar, S., R., Pullaguram, D., Mishra, S., & Senroy, N. Cascaded Fractional Order and Sliding Mode Control for an Autonomous Voltage Source Inverter, 2018 IEEE Power & Energy Society General Meeting (PESGM), Portland, OR, 2018, IEEE, 1-5, DOI: 10.1109/PESGM.2018.8585985.
  • [20] Pan, M., Chen, C., & Zhang, D. Fractional-order Sliding Mode Control Strategy for Quasi-Z Source Photovoltaic Grid-Connected Inverter, 2019 IEEE 3rd Conference on Energy Internet and Energy System Integration (EI2), Changsha, China, 2019, IEEE, 939-943, DOI: 10.1109/EI247390.2019.9061871.
  • [21] Kumar, V., & Ali, I., Fractional order sliding mode approach for chattering free direct power control of DC/AC converter, IET Power Electronics, 2019,12(13), 3600-3610, DOI: 10.1049/iet-pel.2018.5662.
  • [22] Babes, B., Boutaghane, A., Hamouda, N., & Mezaache, M., Design of a robust voltage controller for a DC-DC buck converter using fractional-order terminal sliding mode control strategy, International Conference on Advanced Electrical Engineering (ICAEE) (19-21 Nov. 2019, Algiers, Algeria), 2019, IEEE, 1-6, DOI: 10.1109/ICAEE47123.2019.9014788.
  • [23] Xing Z., Hong Z., Fei L., Fang L., Chun L., & Benxuan L., An LCL-LC power filter for grid-tied inverter,TENCON IEEE Region 10 Conference, (22-25 Oct. 2013, Xi’an, China), 2013, IEEE, 1-4, DOI:10.1109/TENCON.2013.6718873.
  • [24] Ang, Y., Bingham, C., Foster, M., & Howe, D., Design oriented analysis of fourth-order LCLC converters with capacitive output filter, IEEE Proceedings -Electric Power Applications, 2005, 152(2),IEEE, 310–322, DOI: 10.1049/ip-epa:20045112.
  • [25] Olalla, C., Clement, D., Rodriguez, M., & Maksimovic, D., Architectures and control of submodule integrated DC–DC converters for photovoltaic applications, IEEE Trans. Power Electronics, 2013, 28(6), 2980–2997, DOI: 10.1109/TPEL.2012.2219073.
  • [26] Adak, S., Cangi, H., & Yilmaz, A., Design of an LLCL type filter for stand-alone PV systems’ harmonics, Journal of Energy Systems, 2019, 3(1), 36-50, DOI: 10.30521/jes.506076.

Robust fractional order sliding mode control for solar based DC-AC inverter

Year 2020, Volume: 4 Issue: 4, 161 - 178, 31.12.2020
https://doi.org/10.30521/jes.737264

Abstract

Fractional order sliding mode control (FOSMC) strategy for a solar based DC-AC inverter is presented in this work. First FOSMC is implemented to voltage source inverter with a fixed DC input voltage of 400V to drive a load of 2.3 kW at a power factor of 0.8 lag. Here load voltage and current through capacitor as state variables and a linear sliding surface is considered. FOSMC using Gao’s reaching law is derived for inverter circuit. FOSMC is implemented at load bus to control output voltage of inverter with linear and nonlinear loads to desired values. FOSMC controls the output voltage with good voltage regulation, less steady state error of 1.32 %, settling time of 0.15 ms, good dynamic response, and convergence to origin with less chattering compared to classical SMC. FOSMC based solar based VSI is presented. The maximum power from PV array is extracted using P&O MPPT algorithm. A boost converter is used to step up input voltage of 200 V to 400 V. P-V and I-V characteristics are obtained for a typical solar cell of 2.5 kW FOSMC requires less control efforts to obtain a pure sinusoidal output voltage waveform of 230 V (rms) with output voltage THD of 0.135% well within IEEE standards. PSCAD/EMTDC v4.6 is used for simulation work.

References

  • [1] Gudey,S.K., & Gupta, R.,Second order sliding mode control for a single phase voltage source inverter, TENCON 2014 IEEE Region 10 Conference; (22-25 October 2014, Bangkok, Thailand), 2014, IEEE, 1-6, DOI: 10.1109/TENCON.2014.7022439.
  • [2] Delghavi, M.B., Shoja-Majidabad, S., & Yazdani, A., Fractional-order sliding-mode control of islanded distributed energy resource systems, IEEE Transactions Sustainable Energy, 2016, 7(4), 1482-1491, DOI: 10.1109/TSTE.2016.2564105.
  • [3] Sudhakar, B., & Satish Kumar, G.V.E.S., Co-simulation of sliding mode control of single phase grid connected lcl filtered voltage source inverter using LabVIEW and multisim, IEEE Region 10 Conference (TENCON)(22-25 Nov. 2016,Singapore), 2016, IEEE, 311-315, DOI:10.1109/TENCON.2016.7848013.
  • [4] Marripudi, S., Gudey, S.K., & Gujju, G.R., Analysis and design of sliding mode control for MPPT based PV system with a battery storage,14th IEEE India Council International Conference (INDICON) (15-17 December 2017, Roorkee, India),2017, IEEE, 1-6, DOI: 10.1109/INDICON.2017.8487481.
  • [5] Jian, S., Zhitao, L., & Hongye, S., A second-order sliding mode control design for bidirectional DC-DC converter, 36th Chinese Control Conference (CCC) (26-28 July 2017, Dalian, China), 2017, IEEE, 9181-9186, DOI:10.23919/ChiCC.2017.8028819.
  • [6] Hou, B., Liu, J., Dong, F., Wang, M., & Mu, A., Sliding mode control strategy of voltage source inverter based on load current sliding mode observer, IEEE 8th International Power Electronics and Motion Control Conference (IPEMC-ECCE Asia) (22-26 May 2016, Hefei, China), 2016, IEEE, 1269-1273,DOI:10.1109/IPEMC.2016.7512471.
  • [7] Incremona, G.P., Rubagotti, M., & Ferrara, A., Sliding mode control of constrained nonlinear systems, IEEE Transactions on Automatic Control, 2017, 62(6), 2965-2972, DOI:10.1109/TAC.2016.2605043.
  • [8] Nagaboina, V.K., & Gudey, S.K.,Design and analysis of a three phase transformerless hybrid series active power filter based on sliding mode control using PQ- theory and stationary reference frames, Serbian Journal of Electrical Engineering, 2019, 16(3), 289-310, DOI: 10.2298/SJEE1903289N.
  • [9] Chafekar, N., Mate, U.M., Kurode, S.R., & Vyawahare, V., A Design and implementation of fractional order sliding mode controller for DC-DC buck converter, Fifth Indian Control Conference (ICC) (9-11 Jan. 2019, New Delhi, India), 2019, IEEE, 201-206, DOI: 10.1109/INDIANCC.2019.8715589.
  • [10] Chen, Y., Petras, I., & Xue, D., Fractional order control - A tutorial, American Control Conference(10-12 June 2009,St. Louis, MO, USA), 2009, IEEE, 1397-1411, DOI:10.1109/ACC.2009.5160719,
  • [11] Buchade, P.C., Vyawahare, V.A., & Bhole, V.V., Fractional-order control of voltage source inverter (VSI) using Bode's ideal transfer function,2014 International Conference on Circuits Systems, Communication and Information Technology Applications (CSCITA) (4-5 April 2014, Mumbai, India), 2014, IEEE, 403-407, DOI: 10.1109/CSCITA.2014.6839294.
  • [12] Takamatsu, T., Kubo, K., & Ohmori, H., Design of fractional order sliding mode controller via non-integer order back stepping by fractional order derivative of Lyapnov function, Proceedings of International Conference on Advanced Mechatronic Systems (10-12 Aug. 2014, Kumamoto, Japan), 2014, IEEE, 171-174, DOI: 10.1109/ICAMechS.2014.6911645.
  • [13] Zhu, Q., Wang, W., & He, H., Speed control system of induction motor based on fractional order control and internal model decoupling, IEEE International Power Electronics and Application Conference and Exposition (PEAC)(4-7 Nov. 2018,Shenzhen, China), 2018, IEEE, 1-6, DOI: 10.1109/PEAC.2018.8590567.
  • [14] Kumar K.V.K.S.S, Rao, B.V, & Kumar, G.V.E.S., Fractional order PLL based sensorless control of PMSM with sliding mode observer, International Conference on Power, Instrumentation, Control and Computing (PICC)(18-20 Jan. 2018, Government Engineering College, Thirussur, Kerela), 2018, IEEE, 1-6, DOI: 10.1109/PICC.2018.8384774.
  • [15] Zeng, F., Shu, H., Zhu, T., Swe, T., & Yang, B., Fractional-order feedback linearization sliding-mode control design for grid-connected PV inverters, IEEE 3rd International Electrical and Energy Conference (CIEEC)(7-9 Sept. 2019,Beijing, China), 2019, IEEE, 874-878,DOI: 10.1109/CIEEC47146.2019.CIEEC-2019334.
  • [16] Calderon, A, J., B., M., Vinagre & Feliu, V., Fractional Sliding Mode Controlof a DC-DC Buck Converter with Application to DC Motor Drives, ICAR 2003, The 11th Inter. Conf. on Advanced Robotics, Coimbra, Portugal, 2003, IEEE, 252-257.
  • [17] Ningning, Y., Chaojun, W., Rong, J., & Chongxin L., Fractional-Order Terminal Sliding-Mode Control for Buck DC/DC Converter. Mathematical Problems in Engineering, 2016, Hindawi, 1-7, DOI: 10.1155/2016/6935081.
  • [18] Wang, J., Xu, D., Zhou, H., Bai, A., & Lu, W., High-performance fractional order terminal sliding mode control strategy for DC-DC Buck converter, PLoS ONE, 2017, 12(10), e0187152. DOI: 10.1371/journal.pone.0187152.
  • [19] Mudaliyar, S., R., Pullaguram, D., Mishra, S., & Senroy, N. Cascaded Fractional Order and Sliding Mode Control for an Autonomous Voltage Source Inverter, 2018 IEEE Power & Energy Society General Meeting (PESGM), Portland, OR, 2018, IEEE, 1-5, DOI: 10.1109/PESGM.2018.8585985.
  • [20] Pan, M., Chen, C., & Zhang, D. Fractional-order Sliding Mode Control Strategy for Quasi-Z Source Photovoltaic Grid-Connected Inverter, 2019 IEEE 3rd Conference on Energy Internet and Energy System Integration (EI2), Changsha, China, 2019, IEEE, 939-943, DOI: 10.1109/EI247390.2019.9061871.
  • [21] Kumar, V., & Ali, I., Fractional order sliding mode approach for chattering free direct power control of DC/AC converter, IET Power Electronics, 2019,12(13), 3600-3610, DOI: 10.1049/iet-pel.2018.5662.
  • [22] Babes, B., Boutaghane, A., Hamouda, N., & Mezaache, M., Design of a robust voltage controller for a DC-DC buck converter using fractional-order terminal sliding mode control strategy, International Conference on Advanced Electrical Engineering (ICAEE) (19-21 Nov. 2019, Algiers, Algeria), 2019, IEEE, 1-6, DOI: 10.1109/ICAEE47123.2019.9014788.
  • [23] Xing Z., Hong Z., Fei L., Fang L., Chun L., & Benxuan L., An LCL-LC power filter for grid-tied inverter,TENCON IEEE Region 10 Conference, (22-25 Oct. 2013, Xi’an, China), 2013, IEEE, 1-4, DOI:10.1109/TENCON.2013.6718873.
  • [24] Ang, Y., Bingham, C., Foster, M., & Howe, D., Design oriented analysis of fourth-order LCLC converters with capacitive output filter, IEEE Proceedings -Electric Power Applications, 2005, 152(2),IEEE, 310–322, DOI: 10.1049/ip-epa:20045112.
  • [25] Olalla, C., Clement, D., Rodriguez, M., & Maksimovic, D., Architectures and control of submodule integrated DC–DC converters for photovoltaic applications, IEEE Trans. Power Electronics, 2013, 28(6), 2980–2997, DOI: 10.1109/TPEL.2012.2219073.
  • [26] Adak, S., Cangi, H., & Yilmaz, A., Design of an LLCL type filter for stand-alone PV systems’ harmonics, Journal of Energy Systems, 2019, 3(1), 36-50, DOI: 10.30521/jes.506076.
There are 26 citations in total.

Details

Primary Language English
Subjects Electrical Engineering
Journal Section Research Articles
Authors

Shaik Silar Saheb This is me 0000-0002-2780-3650

Satish Kumar Gudey 0000-0003-2444-7467

Publication Date December 31, 2020
Acceptance Date November 17, 2020
Published in Issue Year 2020 Volume: 4 Issue: 4

Cite

Vancouver Saheb SS, Gudey SK. Robust fractional order sliding mode control for solar based DC-AC inverter. JES. 2020;4(4):161-78.

Journal of Energy Systems is the official journal of 

European Conference on Renewable Energy Systems (ECRES8756 and


Electrical and Computer Engineering Research Group (ECERG)  8753


Creative Commons License JES is licensed to the public under a Creative Commons Attribution 4.0 license.