Research Article
BibTex RIS Cite

Analysis of positive output buck-boost topology with extended conversion ratio

Year 2022, Volume: 6 Issue: 1, 62 - 83, 31.03.2022
https://doi.org/10.30521/jes.952692

Abstract

In this paper, a new non-isolated buck-boost converter with positive output is designed. This buck-boost converter contains two active switches which operates synchronously. Hence, the control circuit for the given converter is simple. Compared with the conventional buck-boost converter, the newly designed topology has few advantages such as positive output voltage and quadratic voltage gain. Due to the quadratic voltage gain, this converter can achieve wide voltage conversion ratios without the use of extreme (very low or high) duty ratios. The output voltage of this proposed converter is common ground with the input voltage and its polarity is positive. The continuous conduction mode operation (CCM) of the converter is deeply analyzed in steady state conditions. The necessary component design equations are also obtained along with the switching stresses. The MATLAB/Simulink software is used to design and simulate the proposed converter. The simulated results as well as the comparisons are provided to evaluate the effectiveness of the proposed buck-boost converter.

References

  • [1] Li, WH, He, XN. Review of non-isolated high step-up DC/DC converters in photovoltaic grid-connected applications. IEEE Trans Ind Electron 2011; 58(4): 1239–1250. DOI: 10.1109/TIE.2010.2049715.
  • [2] Pan, CT, Lai, CM. A high-efficiency high step-up converter with low switch voltage stress for fuel-cell system applications. IEEE Trans Ind Electron 2010; 57(6): 1998–2006. DOI: 10.1109/tie.2009.2024100.
  • [3] Nagi Reddy, B, Bharathi, M, Pratyusha, M, Bhargavi, KS, Srikanth Goud, B. Design of a novel isolated single switch AC/DC integrated converter for SMPS applications. International Journal of Emerging Trends in Engineering Research 2020; 8(4): 1111–1119. DOI:10.30534/ijeter/2020/26842020
  • [4] Sri Sivani, L, Nagi Reddy, B, Subba Rao, K, Pandian, A. A new single switch AC/DC converter with extended voltage conversion ratio for SMPS applications. International Journal of Innovative Technology and Exploring Engineering 2019; 8(3): 68–72.
  • [5] Wu, TF, Chen, YK. Modeling PWM DC-DC converters out of basic converter units. IEEE Trans. Power Electron 1998; 13(5): 870-881. DOI:10.1109/63.712294.
  • [6] Nagi Reddy, B, Chandra Sekhar, O, Ramamoorty, M. Implementation of zero current switch turn-on based buck-boost-buck type rectifier for low power applications. International Journal of Electronics 2019; 106(8): 1164–1183. DOI:10.1080/00207217.2019.1582711.
  • [7] Nagi Reddy, B, Pandian, A, Chandra Sekhar, O, Rammoorty, M. Design of non-isolated integrated type AC-DC converter with extended voltage gain and high power factor for Class-C&D applications. International Journal of Recent Technology and Engineering 2019; 7(5): 230–236.
  • [8] Morales-Saldaña, JA, Loera-Palomo, R, Palacios-Hernández, E, González-Martínez, JL. Modelling and control of a DC–DC quadratic boost converter with R2P2. IET Power Electron 2014; 7(1): 11-22. DOI:10.1049/iet-pel.2012.0749.
  • [9] Ye, YM, Cheng, KWE. Quadratic boost converter with low buffer capacitor stress. IET Power Electron. 2014; 7(5): 1162-1170. DOI:10.1049/iet-pel.2013.0205.
  • [10] Nagi Reddy, B, Pandian, A, Chandra Sekhar, O, Ramamoorty, M. Performance and dynamic analysis of single switch AC-DC buck-boost buck converter. International Journal of Innovative Technology and Exploring Engineering 2019; 8(4): 307–313.
  • [11] Nagi Reddy, B, Chandra Sekhar, O, Ramamoorty, M. Analysis and implementation of single-stage buck-boost-buck converter for battery charging applications. Journal of Advanced Research in Dynamical and Control Systems 2018; 10(4): 446–457.
  • [12] Luo, FL. Six self-lift DC-DC converters, voltage lift technique. IEEE Trans Ind Electron. 2001; 48(6): 1268-1272. DOI:10.1109/41.969408.
  • [13] Luo FL, Ye H. Positive output cascade boost converters. IEE Proc Electr Power Appl. 2004; 590-606. DOI: 10.1201/9780203492925.ch5.
  • [14] Zhou, LW, Zhu, BX, Luo, QM, Chen, S. Interleaved non-isolated high step-up DC/DC converter based on the diode– capacitor multiplier. IET Power Electron 2014; 7(2): 390-397. DOI:10.1049/iet-pel.2013.0124.
  • [15] Pan, CT, Chuang, CF, Chu, CC. A novel transformerless interleaved high step-down conversion ratio DC–DC converter with low switch voltage stress. IEEE Trans Ind Electron. 2014; 61(10): 5290-5299. DOI: 10.1109/tie.2014.2301774.
  • [16] Pan, CT, Chuang, CF, Chu, CC. A novel transformerless adaptable voltage quadrupler DC converter with low switch voltage stress. IEEE Trans. Power Electron. Sep 2014, vol. 29 no. 9, pp: 4787-4796.
  • [17] Maksimovic, D, Cuk, S. Switching converters with wide DC conversion range. IEEE Trans Power Electron. 1991; 6(1): 151-157. DOI:10.1109/63.65013.
  • [18] Ajami, A, Ardi, H, Farakhor, A. Design, analysis and implementation of a buck–boost DC/DC converter. IET Power Electron. 2014; 7(12): 2902-2913. DOI:10.1049/iet-pel.2013.0874.
  • [19] Kim RY, Lai RS. Aggregated modeling and control of a boost-buck cascade converter for maximum power point tracking of a thermoelectric generator. Appl. Power Electron Conf Expos. 2008; 1754-1760. DOI: 10.1109/apec.2008.4522964.
  • [20] Hwu, KI, Peng, TJ. A novel buck–boost converter combining KY and buck converters. IEEE Trans Power Electron. 2012; 27(5): 2236-2241. DOI:10.1109/tpel.2011.2182208.
  • [21] Chen, YT, Lin, WC, Liang, RH. An interleaved high step-up DC-DC converter with double boost paths. Int J Circ Theor Appl. 2014; DOI:10.1002/cta.1986.
  • [22] He Y, Luo FL. Analysis of Luo converters with voltage-lift circuit. IEE Proc Electr Power Appl. 2005; 152(5):1239-1252. DOI:10.1049/ip-epa:20045176.
  • [23] Zhu, M, Luo, FL. Enhanced self-lift Cuk converter for negative-to-positive voltage conversion. IEEE Trans Power Electron. 2010; 25(9): 2227-2233. DOI:10.1109/tpel.2010.2047269
  • [24] Luo, FL. Negative output Luo converters: voltage lift technique. IEE Proc Electr Power Appl. 1999; 146(2): 208-224. DOI: 10.1049/ip-epa:19990302.
  • [25] Maksimovic, D, Cuk, S. Switching converters with wide DC conversion range. IEEE Trans Power Electron 1991; 6(1): 151-157. DOI:10.1109/63.65013
Year 2022, Volume: 6 Issue: 1, 62 - 83, 31.03.2022
https://doi.org/10.30521/jes.952692

Abstract

References

  • [1] Li, WH, He, XN. Review of non-isolated high step-up DC/DC converters in photovoltaic grid-connected applications. IEEE Trans Ind Electron 2011; 58(4): 1239–1250. DOI: 10.1109/TIE.2010.2049715.
  • [2] Pan, CT, Lai, CM. A high-efficiency high step-up converter with low switch voltage stress for fuel-cell system applications. IEEE Trans Ind Electron 2010; 57(6): 1998–2006. DOI: 10.1109/tie.2009.2024100.
  • [3] Nagi Reddy, B, Bharathi, M, Pratyusha, M, Bhargavi, KS, Srikanth Goud, B. Design of a novel isolated single switch AC/DC integrated converter for SMPS applications. International Journal of Emerging Trends in Engineering Research 2020; 8(4): 1111–1119. DOI:10.30534/ijeter/2020/26842020
  • [4] Sri Sivani, L, Nagi Reddy, B, Subba Rao, K, Pandian, A. A new single switch AC/DC converter with extended voltage conversion ratio for SMPS applications. International Journal of Innovative Technology and Exploring Engineering 2019; 8(3): 68–72.
  • [5] Wu, TF, Chen, YK. Modeling PWM DC-DC converters out of basic converter units. IEEE Trans. Power Electron 1998; 13(5): 870-881. DOI:10.1109/63.712294.
  • [6] Nagi Reddy, B, Chandra Sekhar, O, Ramamoorty, M. Implementation of zero current switch turn-on based buck-boost-buck type rectifier for low power applications. International Journal of Electronics 2019; 106(8): 1164–1183. DOI:10.1080/00207217.2019.1582711.
  • [7] Nagi Reddy, B, Pandian, A, Chandra Sekhar, O, Rammoorty, M. Design of non-isolated integrated type AC-DC converter with extended voltage gain and high power factor for Class-C&D applications. International Journal of Recent Technology and Engineering 2019; 7(5): 230–236.
  • [8] Morales-Saldaña, JA, Loera-Palomo, R, Palacios-Hernández, E, González-Martínez, JL. Modelling and control of a DC–DC quadratic boost converter with R2P2. IET Power Electron 2014; 7(1): 11-22. DOI:10.1049/iet-pel.2012.0749.
  • [9] Ye, YM, Cheng, KWE. Quadratic boost converter with low buffer capacitor stress. IET Power Electron. 2014; 7(5): 1162-1170. DOI:10.1049/iet-pel.2013.0205.
  • [10] Nagi Reddy, B, Pandian, A, Chandra Sekhar, O, Ramamoorty, M. Performance and dynamic analysis of single switch AC-DC buck-boost buck converter. International Journal of Innovative Technology and Exploring Engineering 2019; 8(4): 307–313.
  • [11] Nagi Reddy, B, Chandra Sekhar, O, Ramamoorty, M. Analysis and implementation of single-stage buck-boost-buck converter for battery charging applications. Journal of Advanced Research in Dynamical and Control Systems 2018; 10(4): 446–457.
  • [12] Luo, FL. Six self-lift DC-DC converters, voltage lift technique. IEEE Trans Ind Electron. 2001; 48(6): 1268-1272. DOI:10.1109/41.969408.
  • [13] Luo FL, Ye H. Positive output cascade boost converters. IEE Proc Electr Power Appl. 2004; 590-606. DOI: 10.1201/9780203492925.ch5.
  • [14] Zhou, LW, Zhu, BX, Luo, QM, Chen, S. Interleaved non-isolated high step-up DC/DC converter based on the diode– capacitor multiplier. IET Power Electron 2014; 7(2): 390-397. DOI:10.1049/iet-pel.2013.0124.
  • [15] Pan, CT, Chuang, CF, Chu, CC. A novel transformerless interleaved high step-down conversion ratio DC–DC converter with low switch voltage stress. IEEE Trans Ind Electron. 2014; 61(10): 5290-5299. DOI: 10.1109/tie.2014.2301774.
  • [16] Pan, CT, Chuang, CF, Chu, CC. A novel transformerless adaptable voltage quadrupler DC converter with low switch voltage stress. IEEE Trans. Power Electron. Sep 2014, vol. 29 no. 9, pp: 4787-4796.
  • [17] Maksimovic, D, Cuk, S. Switching converters with wide DC conversion range. IEEE Trans Power Electron. 1991; 6(1): 151-157. DOI:10.1109/63.65013.
  • [18] Ajami, A, Ardi, H, Farakhor, A. Design, analysis and implementation of a buck–boost DC/DC converter. IET Power Electron. 2014; 7(12): 2902-2913. DOI:10.1049/iet-pel.2013.0874.
  • [19] Kim RY, Lai RS. Aggregated modeling and control of a boost-buck cascade converter for maximum power point tracking of a thermoelectric generator. Appl. Power Electron Conf Expos. 2008; 1754-1760. DOI: 10.1109/apec.2008.4522964.
  • [20] Hwu, KI, Peng, TJ. A novel buck–boost converter combining KY and buck converters. IEEE Trans Power Electron. 2012; 27(5): 2236-2241. DOI:10.1109/tpel.2011.2182208.
  • [21] Chen, YT, Lin, WC, Liang, RH. An interleaved high step-up DC-DC converter with double boost paths. Int J Circ Theor Appl. 2014; DOI:10.1002/cta.1986.
  • [22] He Y, Luo FL. Analysis of Luo converters with voltage-lift circuit. IEE Proc Electr Power Appl. 2005; 152(5):1239-1252. DOI:10.1049/ip-epa:20045176.
  • [23] Zhu, M, Luo, FL. Enhanced self-lift Cuk converter for negative-to-positive voltage conversion. IEEE Trans Power Electron. 2010; 25(9): 2227-2233. DOI:10.1109/tpel.2010.2047269
  • [24] Luo, FL. Negative output Luo converters: voltage lift technique. IEE Proc Electr Power Appl. 1999; 146(2): 208-224. DOI: 10.1049/ip-epa:19990302.
  • [25] Maksimovic, D, Cuk, S. Switching converters with wide DC conversion range. IEEE Trans Power Electron 1991; 6(1): 151-157. DOI:10.1109/63.65013
There are 25 citations in total.

Details

Primary Language English
Subjects Electrical Engineering
Journal Section Research Articles
Authors

Nagı Reddy B 0000-0002-9202-1153

Sahithi Priya Kosika This is me 0000-0002-2841-346X

Manish Patel Gadam This is me 0000-0003-0905-2280

Jagadhishwar Banoth This is me 0000-0002-9202-8937

Ashok Banoth This is me 0000-0002-1085-104X

Srikanth Goud, B. This is me 0000-0002-5107-9738

Publication Date March 31, 2022
Acceptance Date January 21, 2022
Published in Issue Year 2022 Volume: 6 Issue: 1

Cite

Vancouver B NR, Kosika SP, Gadam MP, Banoth J, Banoth A, Goud, B. S. Analysis of positive output buck-boost topology with extended conversion ratio. JES. 2022;6(1):62-83.

Journal of Energy Systems is the official journal of 

European Conference on Renewable Energy Systems (ECRES8756 and


Electrical and Computer Engineering Research Group (ECERG)  8753


Creative Commons License JES is licensed to the public under a Creative Commons Attribution 4.0 license.