Research Article
BibTex RIS Cite
Year 2022, Volume: 6 Issue: 1, 84 - 96, 31.03.2022
https://doi.org/10.30521/jes.952837

Abstract

References

  • [1] Büyüköztürk, O, Yu, TY. Structural health monitoring and seismic impact assessment. In: The 5th National Conference on Earthquake Engineering; 26-30 May 2003: Cenkler Matbaası, Bucharest, Romania, pp 1-6.
  • [2] Aktan, AE, Farhey, DN, Brown, DL, Dalal, V, Helmicki, AJ, Hunt VJ, Shelley, SJ. Condition assessment for bridge management. Journal of Infrastructure Systems 1996; 2(3): 108-117. DOI: 10.1061/(ASCE)1076-0342(1996)2:3(108).
  • [3] Fujino, Y, Siringoringo, D. Strategies for structural health monitoring of bridges: Japan’s experience and practice. In: Martinez JM, American Environmentalism: Philosophy, History, and Public Policy. New York, United States: Routledge, 2013, pp. 15-20.
  • [4] Güney, D. Ekim 2011 Van Depremi Teknik İnceleme Raporu [Van earthquake technical investigation report] Yıldız Technical University, İstanbul, 2011.
  • [5] Williamson, AL, Newman, AV. Suitability of open-ocean instrumentation for use in near-field tsunami early warning along seismically active subduction zones. Pure and Applied Geophysics, 2019; 176(7): 3247-3262. DOI: 10.1007/s00024-018-1898-6.
  • [6] FEMA. Safe rooms for tornadoes and hurricanes: Guidance for community and residential safe rooms, Washington, DC, 2015
  • [7] Sumitro, S, Wang, ML. Structural Health Monitoring System Applications in Japan. In: Ansari F., Sensing Issues in Civil Structural Health Monitoring, Dordrecht, Netherlands: Springer, 2005, pp. 495-504.
  • [8] Chan TH, Thambiratnam DP. Structural health monitoring in Australia. Hauppauge New York, United States: Nova Science Publishers, 2011.
  • [9] Çaktı, E, Şafak, E. Structural Health Monitoring: Lessons Learned. In: Kasimzade, AA, Şafak, E, Ventura, CE, Naeim F, Mukai Y, Seismic Isolation, Structural Health Monitoring, and Performance Based Seismic Design in Earthquake Engineering, Cham, Switzerland: Springer, 2019, pp. 145-164.
  • [10] Chen, GW, Omenzetter, P, Beskhyroun, S. Operational modal analysis of an eleven-span concrete bridge subjected to weak ambient excitations. Engineering Structures 2017; 151: 839-860. DOI: 10.1016/j.engstruct.2017.08.066.
  • [11] Abé, M, Fujino, Y. Monitoring of long-span bridges in Japan. Proceedings of the Institution of Civil Engineers-Civil Engineering 2017; 170(3): 135-144. DOI: 10.1680/jcien.16.00002.
  • [12] Hester, J, Prabhu, S, Atamturktur, S, Sorber, J. Remote and wireless long-term vibration monitoring of historic monuments. Procedia engineering 2017; 199: 3302-3307. DOI: 10.1016/j.proeng.2017.09.416.
  • [13] Compán, V, Pachón, P, Cámara, M, Lourenço, PB, Sáez, A. Structural safety assessment of geometrically complex masonry vaults by non-linear analysis. The Chapel of the Würzburg Residence (Germany). Engineering Structures 2017; 140: 1-13. DOI: 10.1016/j.engstruct.2017.03.002.
  • [14] Lorenzo, GWF, Mercerat, D, d'Avila, MPS, Bertrand, E, Deschamps, A. Operational modal analysis of a high rise rc building and modelling. In IOMAC'15-The 6th International Operational Modal Analysis Conference; 12-14 May 2015: Gijon, Spain, pp. 1-10.
  • [15] Juul, M, Balling, O, Brincker, R. Operational Modal Analysis on Wind Turbine Hub. In: Mains M, Dilworth BJ, Topics in Modal Analysis & Testing. Cham, Switzerland: Springer, 2019. pp. 69-77.
  • [16] Kirschneck, M, Rixen, DJ, Polinder, H, van Ostayen, R. In-Situ Experimental Modal Analysis of a Direct-Drive Wind Turbine Generator. In: De Clerck J, Experimental Techniques, Rotating Machinery, and Acoustics. Cham, Switzerland: Springer, 2015. pp. 157-165.
  • [17] Nord, TS, Kvåle, KA, Petersen, ØW, Bjerkås, M, Lourens, EM. Operational modal analysis on a lighthouse structure subjected to ice actions. Procedia engineering 2017; 199: pp. 1014-1019. DOI: 10.1016/j.proeng.2017.09.268.
  • [18] Friedland B. Control system design: an introduction to state-space methods. Mineola, New York, United States: Bernard Friedland Dover Publications, 2012.
  • [19] Yang, JN. Application of optimal control theory to civil engineering structures. J Eng Mech Div-ASCE 1975; 101(6): 819-838. DOI: 10.1002/stc.334.
  • [20] Peeters B. System identification and damage detection in civil engeneering. PhD Thesis, Katholieke Universiteit Leuven, Belgium, 2000.
  • [21] Ren WX and Zong ZH. Output-only modal parameter identification of civil engineering structures. Structural Engineering and Mechanics 2004; 17(3-4): pp. 429-444. DOI: 10.12989/sem.2004.17.3_4.429.
  • [22] Zonzini, F, Malatesta, MM, Bogomolov, D, Testoni, N, Marzani, A, De Marchi, L. Vibration-Based SHM With Upscalable and Low-Cost Sensor Networks. IEEE Transactions on Instrumentation and Measurement 2020; 69(10): pp. 7990-7998. DOI: 10.1109/TIM.2020.2982814.
  • [23] Fu, Z, He, J. Overview of modal analysis. In: He, J, Fu, ZF, Modal analysis, Butterworth-Heinemann, Oxford, United Kingdom: Elsevier, 2001, pp. 1-11. DOI: 10.1016/B978-0-7506-5079-3.X5000-1
  • [24] Rainieri, C, Fabbrocino, G. Automated output-only dynamic identification of civil engineering structures. Mechanical Systems and Signal Processing 2010; 24(3): 678-695. DOI: 10.1016/j.ymssp.2009.10.003.
  • [25] Alonso, R, Albizuri, J, Esparza, J. Application of model updating techniques to turbomachinery rotor components. Advances in Mechanical Engineering 2019; 11(7): 1-9. DOI: 10.1177/1687814019863941.
  • [26] Gomes, GF, Mendéz, YAD, da Cunha, SS. A numerical–experimental study for structural damage detection in CFRP plates using remote vibration measurements. Journal of Civil Structural Health Monitoring 2018; 8: 33–47. DOI: 10.1007/s13349-017-0254-3.
  • [27] Rao, SS. Mechanical Vibrations. Miami, United States: Prentice Hall, 2011.
  • [28] Rainieri, C, Fabbrocino, G. Automated output-only dynamic identification of civil engineering structures. Mechanical Systems and Signal Processing 2010; 24(3): 678-695. DOI: 10.1016/j.ymssp.2009.10.003.
  • [29] Reynders, E. System identification and modal Analysis in structural mechanics. PhD Thesis, Katholieke Universiteit Leuven, Belgium, 2009.
  • [30] Reynders, E, Daan Degrauwe, D, Roeck, GD, Magalhães, F, Caetano, E. Combined experimental-operational modal testing of footbridges. Journal of Engineering Mechanics 2010; 136(6): 687-696. DOI: 10.1061/(ASCE)EM.1943-7889.0000119.
  • [31] Cauberghe, B, Guillaume, P, Verboven, P, Parloo, E, Vanlanduit, S. A combined experimental-operational modal analysis approach in the frequency domain. In: The 21st International Modal Analysis Conference (IMAC XXI); 3-6 February 2003: Kissemmee, Florida, USA, pp. 1-9.
  • [32] Pioldi, F, Salvi, J, Rizzi, E. Refined FDD modal dynamic identification from earthquake responses with Soil-Structure Interaction. International Journal of Mechanical Sciences 2017; 127: 47-61. DOI: 10.1016/j.ijmecsci.2016.10.032.
  • [33] Tufan, T, Akalp, S. Modal plot—System identification and fault detection. Structural Control and Health Monitoring 2019; 26(5): e2347. DOI: 10.1002/stc.2347.
  • [34] McRAE DJ. K-means clustering using multivariate data. Classification Soc. Bull 1970; 2(2): 62.
  • [35] Perera, R, Torres, L, Ruiz, A, Barris, C, Baena, M. An EMI-Based Clustering for Structural Health Monitoring of NSM FRP Strengthening Systems. Sensors 2019; 19(17): 3775. DOI: 10.3390/s19173775.
  • [36].Hartigan JA, Wong MA. Algorithm AS 136: A k-means clustering algorithm. Journal of the Royal Statistical Society. Series C (Applied Statistics) 1979; 28(1): pp. 100-108. DOI: 10.2307/2346830.

An analysis on mode excitation energy in beam-like structures

Year 2022, Volume: 6 Issue: 1, 84 - 96, 31.03.2022
https://doi.org/10.30521/jes.952837

Abstract

Energy harvesting, which is a popular subject, can be defined as the use of energy released by environmental forces such as earth-shaking, wind, etc. Civil engineering structures also harvest energy in a different way. Thanks to this energy harvest, the modal properties of structures such as natural frequency, mode shape can be estimated from the response histories taken from the structure. Modal properties of the structure give an impression of the health of the building. However, an important question comes to mind: Did the energy harvesting of the structures sufficiently drive the modes used to detect damage? Or in other words, has it exceeded a certain amount of energy to drive the modes? If the mode in question is not sufficiently excited, it can be interpreted as a harbinger of damage for an undamaged structure in the analysis using these modes. For this reason, it is an important issue to determine to what extent the modes are driven. In this study, the aforementioned subject has been explored with the title "Mode Excitation Energy" using the modal plot method.

References

  • [1] Büyüköztürk, O, Yu, TY. Structural health monitoring and seismic impact assessment. In: The 5th National Conference on Earthquake Engineering; 26-30 May 2003: Cenkler Matbaası, Bucharest, Romania, pp 1-6.
  • [2] Aktan, AE, Farhey, DN, Brown, DL, Dalal, V, Helmicki, AJ, Hunt VJ, Shelley, SJ. Condition assessment for bridge management. Journal of Infrastructure Systems 1996; 2(3): 108-117. DOI: 10.1061/(ASCE)1076-0342(1996)2:3(108).
  • [3] Fujino, Y, Siringoringo, D. Strategies for structural health monitoring of bridges: Japan’s experience and practice. In: Martinez JM, American Environmentalism: Philosophy, History, and Public Policy. New York, United States: Routledge, 2013, pp. 15-20.
  • [4] Güney, D. Ekim 2011 Van Depremi Teknik İnceleme Raporu [Van earthquake technical investigation report] Yıldız Technical University, İstanbul, 2011.
  • [5] Williamson, AL, Newman, AV. Suitability of open-ocean instrumentation for use in near-field tsunami early warning along seismically active subduction zones. Pure and Applied Geophysics, 2019; 176(7): 3247-3262. DOI: 10.1007/s00024-018-1898-6.
  • [6] FEMA. Safe rooms for tornadoes and hurricanes: Guidance for community and residential safe rooms, Washington, DC, 2015
  • [7] Sumitro, S, Wang, ML. Structural Health Monitoring System Applications in Japan. In: Ansari F., Sensing Issues in Civil Structural Health Monitoring, Dordrecht, Netherlands: Springer, 2005, pp. 495-504.
  • [8] Chan TH, Thambiratnam DP. Structural health monitoring in Australia. Hauppauge New York, United States: Nova Science Publishers, 2011.
  • [9] Çaktı, E, Şafak, E. Structural Health Monitoring: Lessons Learned. In: Kasimzade, AA, Şafak, E, Ventura, CE, Naeim F, Mukai Y, Seismic Isolation, Structural Health Monitoring, and Performance Based Seismic Design in Earthquake Engineering, Cham, Switzerland: Springer, 2019, pp. 145-164.
  • [10] Chen, GW, Omenzetter, P, Beskhyroun, S. Operational modal analysis of an eleven-span concrete bridge subjected to weak ambient excitations. Engineering Structures 2017; 151: 839-860. DOI: 10.1016/j.engstruct.2017.08.066.
  • [11] Abé, M, Fujino, Y. Monitoring of long-span bridges in Japan. Proceedings of the Institution of Civil Engineers-Civil Engineering 2017; 170(3): 135-144. DOI: 10.1680/jcien.16.00002.
  • [12] Hester, J, Prabhu, S, Atamturktur, S, Sorber, J. Remote and wireless long-term vibration monitoring of historic monuments. Procedia engineering 2017; 199: 3302-3307. DOI: 10.1016/j.proeng.2017.09.416.
  • [13] Compán, V, Pachón, P, Cámara, M, Lourenço, PB, Sáez, A. Structural safety assessment of geometrically complex masonry vaults by non-linear analysis. The Chapel of the Würzburg Residence (Germany). Engineering Structures 2017; 140: 1-13. DOI: 10.1016/j.engstruct.2017.03.002.
  • [14] Lorenzo, GWF, Mercerat, D, d'Avila, MPS, Bertrand, E, Deschamps, A. Operational modal analysis of a high rise rc building and modelling. In IOMAC'15-The 6th International Operational Modal Analysis Conference; 12-14 May 2015: Gijon, Spain, pp. 1-10.
  • [15] Juul, M, Balling, O, Brincker, R. Operational Modal Analysis on Wind Turbine Hub. In: Mains M, Dilworth BJ, Topics in Modal Analysis & Testing. Cham, Switzerland: Springer, 2019. pp. 69-77.
  • [16] Kirschneck, M, Rixen, DJ, Polinder, H, van Ostayen, R. In-Situ Experimental Modal Analysis of a Direct-Drive Wind Turbine Generator. In: De Clerck J, Experimental Techniques, Rotating Machinery, and Acoustics. Cham, Switzerland: Springer, 2015. pp. 157-165.
  • [17] Nord, TS, Kvåle, KA, Petersen, ØW, Bjerkås, M, Lourens, EM. Operational modal analysis on a lighthouse structure subjected to ice actions. Procedia engineering 2017; 199: pp. 1014-1019. DOI: 10.1016/j.proeng.2017.09.268.
  • [18] Friedland B. Control system design: an introduction to state-space methods. Mineola, New York, United States: Bernard Friedland Dover Publications, 2012.
  • [19] Yang, JN. Application of optimal control theory to civil engineering structures. J Eng Mech Div-ASCE 1975; 101(6): 819-838. DOI: 10.1002/stc.334.
  • [20] Peeters B. System identification and damage detection in civil engeneering. PhD Thesis, Katholieke Universiteit Leuven, Belgium, 2000.
  • [21] Ren WX and Zong ZH. Output-only modal parameter identification of civil engineering structures. Structural Engineering and Mechanics 2004; 17(3-4): pp. 429-444. DOI: 10.12989/sem.2004.17.3_4.429.
  • [22] Zonzini, F, Malatesta, MM, Bogomolov, D, Testoni, N, Marzani, A, De Marchi, L. Vibration-Based SHM With Upscalable and Low-Cost Sensor Networks. IEEE Transactions on Instrumentation and Measurement 2020; 69(10): pp. 7990-7998. DOI: 10.1109/TIM.2020.2982814.
  • [23] Fu, Z, He, J. Overview of modal analysis. In: He, J, Fu, ZF, Modal analysis, Butterworth-Heinemann, Oxford, United Kingdom: Elsevier, 2001, pp. 1-11. DOI: 10.1016/B978-0-7506-5079-3.X5000-1
  • [24] Rainieri, C, Fabbrocino, G. Automated output-only dynamic identification of civil engineering structures. Mechanical Systems and Signal Processing 2010; 24(3): 678-695. DOI: 10.1016/j.ymssp.2009.10.003.
  • [25] Alonso, R, Albizuri, J, Esparza, J. Application of model updating techniques to turbomachinery rotor components. Advances in Mechanical Engineering 2019; 11(7): 1-9. DOI: 10.1177/1687814019863941.
  • [26] Gomes, GF, Mendéz, YAD, da Cunha, SS. A numerical–experimental study for structural damage detection in CFRP plates using remote vibration measurements. Journal of Civil Structural Health Monitoring 2018; 8: 33–47. DOI: 10.1007/s13349-017-0254-3.
  • [27] Rao, SS. Mechanical Vibrations. Miami, United States: Prentice Hall, 2011.
  • [28] Rainieri, C, Fabbrocino, G. Automated output-only dynamic identification of civil engineering structures. Mechanical Systems and Signal Processing 2010; 24(3): 678-695. DOI: 10.1016/j.ymssp.2009.10.003.
  • [29] Reynders, E. System identification and modal Analysis in structural mechanics. PhD Thesis, Katholieke Universiteit Leuven, Belgium, 2009.
  • [30] Reynders, E, Daan Degrauwe, D, Roeck, GD, Magalhães, F, Caetano, E. Combined experimental-operational modal testing of footbridges. Journal of Engineering Mechanics 2010; 136(6): 687-696. DOI: 10.1061/(ASCE)EM.1943-7889.0000119.
  • [31] Cauberghe, B, Guillaume, P, Verboven, P, Parloo, E, Vanlanduit, S. A combined experimental-operational modal analysis approach in the frequency domain. In: The 21st International Modal Analysis Conference (IMAC XXI); 3-6 February 2003: Kissemmee, Florida, USA, pp. 1-9.
  • [32] Pioldi, F, Salvi, J, Rizzi, E. Refined FDD modal dynamic identification from earthquake responses with Soil-Structure Interaction. International Journal of Mechanical Sciences 2017; 127: 47-61. DOI: 10.1016/j.ijmecsci.2016.10.032.
  • [33] Tufan, T, Akalp, S. Modal plot—System identification and fault detection. Structural Control and Health Monitoring 2019; 26(5): e2347. DOI: 10.1002/stc.2347.
  • [34] McRAE DJ. K-means clustering using multivariate data. Classification Soc. Bull 1970; 2(2): 62.
  • [35] Perera, R, Torres, L, Ruiz, A, Barris, C, Baena, M. An EMI-Based Clustering for Structural Health Monitoring of NSM FRP Strengthening Systems. Sensors 2019; 19(17): 3775. DOI: 10.3390/s19173775.
  • [36].Hartigan JA, Wong MA. Algorithm AS 136: A k-means clustering algorithm. Journal of the Royal Statistical Society. Series C (Applied Statistics) 1979; 28(1): pp. 100-108. DOI: 10.2307/2346830.
There are 36 citations in total.

Details

Primary Language English
Journal Section Research Articles
Authors

Tarık Tufan 0000-0001-9324-2401

Hasan Köten 0000-0002-1907-9420

Publication Date March 31, 2022
Acceptance Date December 15, 2021
Published in Issue Year 2022 Volume: 6 Issue: 1

Cite

Vancouver Tufan T, Köten H. An analysis on mode excitation energy in beam-like structures. JES. 2022;6(1):84-96.

Journal of Energy Systems is the official journal of 

European Conference on Renewable Energy Systems (ECRES8756 and


Electrical and Computer Engineering Research Group (ECERG)  8753


Creative Commons License JES is licensed to the public under a Creative Commons Attribution 4.0 license.