This study aims to investigate a feasible converter architecture and corresponding control method for Wind Turbine (WT) systems using permanent magnet synchronous generators (PMSG). The converter configuration is designed based on the AC/DC/AC converter, including the Diode Bridge Rectifier (DBR) and Pulse Width Modulated Current Source Inverter (PWM-CSI), Buck-Boost Converter (BBC), and Bypass Chopper (BC). The control strategy for the proposed converter is developed to enhance the operating performance of WT-PMSG, which must satisfy four requisitions. Firstly, it proposes the control approach for the pitch angle to control the output power of the WT when the wind speed is over the rated value. The selected control variables are the generator speed and active power. Secondly, the Maximum Power Point Tracking (MPPT) is archived to the satisfaction of the full-range operation through the control strategy for the BBC. The control strategy is applied by the Proportional Integral (PI) controller. The control variables are the generator speed and the diode rectifier's output DC current. Thirdly, the control strategy for PWM-CSI controls the voltage at the connection point and the frequency of the inverter. Fourthly, the DC-link voltage is controlled to the constant value at various operating conditions. Simulation of a 3MW and 0.69 kV WT-PMSG was carried on in PSCAD software to verify under considering the variable wind speed and the three-phase fault. The obtained results prove the feasibility of the proposed WT-PMSG system that serves as an alternative for a high-power wind energy conversion system.
AC/DC/AC converter AC/DC/AC converter Electric generator Permanent magnet synchronous generator Wind energy conversion system Wind turbine
The author gratefully acknowledge the Industrial University of Ho Chi Minh City for the financial support and the facilities offered during this research.
AC/DC/AC converter Electric generator Permanent magnet synchronous generator Wind energy conversion system Wind turbine
Primary Language | English |
---|---|
Subjects | Electrical Engineering |
Journal Section | Research Articles |
Authors | |
Publication Date | December 31, 2022 |
Acceptance Date | September 19, 2022 |
Published in Issue | Year 2022 Volume: 6 Issue: 4 |
Journal of Energy Systems is the official journal of
European Conference on Renewable Energy Systems (ECRES) and
Electrical and Computer Engineering Research Group (ECERG)
Journal of Energy Systems is licensed under CC BY-NC 4.0