Research Article
BibTex RIS Cite

Impact of PCM type on photocell performance using heat pipe-PCM cooling system: A numerical study

Year 2023, Volume: 7 Issue: 1, 67 - 88, 31.03.2023
https://doi.org/10.30521/jes.1159281

Abstract

The effectiveness of a hybrid cooling system consisting of flat heat pipes (HP) and a heat sink of phase change material (PCM) for the temperature regulation of the photocell (PV) is studied. The system is mathematically modeled and numerically solved by using MatLab software. The impact of the type of PCM (RT25, RT35, and RT42) in summer on the performance of the hybrid photocell cooling system is analyzed. Results prove that the HP-PCM cooling system performs better than the natural photocell cooling. PCM with a low melting point is more efficient for electric performance than a high melting point. For a given PCM thickness of 4 cm, the maximum temperature of the photocell is reduced by 8.7 °C when PCM RT25 is used as a heat sink compared to 7.5 °C and 7.3 °C for RT35 and RT42, respectively. RT25-based PV/HP-PCM system outperformed a conventionally cooled photocell in terms of electrical efficiency by 5.3%. In comparison, RT35 and RT42 yield incremental gains of 5% and 4.5 %, respectively. As the PCM melting point is lowered, the hourly thermal efficiency increases with a peak of 48.9% for RT25, 33.7% for RT35, and 32.2% for RT42, respectively.

Supporting Institution

Egypt-Japan University of science and technology

Thanks

The authors express their appreciation to the Egyptian Ministry of Higher Education (MoHE) and the Egypt-Japan University of Science and Technology (E-JUST) for sponsoring and supporting this research.

References

  • [1] Nasser, M, Megahed, TF, Ookawara, S, Hassan, H. Techno-economic assessment of green hydrogen production using different configurations of wind turbines and PV panels. Journal of Energy Systems 2022; 6: 560-572. DOI: 10.30521/jes.1132111.
  • [2] Soliman, AS, Xu, L, Dong, J, Cheng, P. Numerical investigation of a photovoltaic module under different weather conditions. Energy Reports 2022; 8: 1045–1058. DOI: 10.1016/j.egyr.2022.10.348.
  • [3] Browne, MC, Norton, B, McCormack, SJ. Heat retention of a photovoltaic/thermal collector with PCM. Solar Energy 2016; 133: 533–548. DOI: 10.1016/j.solener.2016.04.024.
  • [4] Huang, MJ, Eames, PC, Norton, B. Thermal regulation of building-integrated photovoltaics using phase change materials. International Journal of Heat and Mass Transfer 2004; 47: 2715–2733. DOI: 10.1016/j.ijheatmasstransfer.2003.11.015.
  • [5] Nasef, HA, Hassan, H, Mori, S, Nada, SA. Experimental investigation on the performance of parallel and staggered arrays of PCM energy storage system for PV thermal regulation. Energy Conversion and Management 2021; 254: 115143. DOI: 10.1016/j.enconman.2021.115143.
  • [6] Wu, SY, Zhang, QL, Xiao, L, Guo, FH. A heat pipe photovoltaic/thermal (PV/T) hybrid system and its performance evaluation. Energy and Buildings 2011: 43: 3558–3567. DOI: 10.1016/j.enbuild.2011.09.017.
  • [7] Bahaidarah, HMS, Baloch, AAB, Gandhidasan, P. Uniform cooling of photovoltaic panels: A review. Renewable and Sustainable Energy Reviews 2016, 57, 1520–1544. DOI: 10.1016/j.rser.2015.12.064.
  • [8] Tan, L, Date, A, Fernandes, G, Singh, B, Ganguly, S. Efficiency Gains of Photovoltaic System Using Latent Heat Thermal Energy Storage. Energy Procedia 2017; 110: 83–88. DOI: 10.1016/j.egypro.2017.03.110.
  • [9] Said, MA, Hassan, H. A study on the thermal energy storage of different phase change materials incorporated with the condenser of air-conditioning unit and their effect on the unit performance. Energy and Building 2019; 202. DOI: 10.1016/j.enbuild.2019.109353.
  • [10] Soliman, AS, Zhu, S, Xu, L, Dong, J, Cheng, P. Design of an H2O-LiBr absorption system using PCMs and powered by automotive exhaust gas. Applied Thermal Engineering 2021; 191. DOI: 10.1016/j.applthermaleng.2021.116881.
  • [11] Ismail, M, Zahra, WK, Ookawara, S, Hassan, H. Boosting the air conditioning unit performance using phase change material : Impact of system configuration. Journal of Energy Storage 2022; 56: 105864. DOI: 10.1016/j.est.2022.105864.
  • [12] Soliman, AS, Zhu, S, Xu, L, Dong, J, Cheng, P. Melting enhancement of nano-phase change material in cylindrical enclosure using convex/concave dimples: Numerical simulation with experimental validation, Journal of Energy Storage 2021; 44. DOI: 10.1016/j.est.2021.103470.
  • [13] Zalba, B, Marin, JM, Cabeza, LF, Mehling, H. Review on thermal energy storage with phase change: materials, heat transfer analysis and applications, Applied Thermal Engineering 2003; 23: 251-283. DOI: 10.1016/S1359-4311(02)00192-8.
  • [14] Kumar, R, Praveen, P, Gupta, S, Saikiran, J, Bharj, RS. Performance evaluation of photovoltaic module integrated with phase change material-filled container with external fins for extremely hot climates. Journal of Energy Storage 2020; 32: 101876. DOI: 10.1016/j.est.2020.101876.
  • [15] Qasim, MA, Ali, HM, Khan, MN, Arshad, N, Khaliq, D, Ali, Z, Janjua, MM. The effect of using hybrid phase change materials on thermal management of photovoltaic panels – An experimental study. Solar Energy 2020; 209: 415–423. DOI: 10.1016/j.solener.2020.09.027.
  • [16] Savvakis, N, Dialyna, E, Tsoutsos, T. Investigation of the operational performance and efficiency of an alternative PV + PCM concept. Solar Energy 2020; 211: 1283–1300. DOI: 10.1016/j.solener.2020.10.053.
  • [17] Ho, CJ, Chou, WL, Lai, CM. Thermal and electrical performances of a water-surface floating PV integrated with double water-saturated MEPCM layers. Applied Thermal Engineering 2016; 94: 122–132. DOI: 10.1016/j.applthermaleng.2015.10.097.
  • [18] Mahdi, JM, Mohammed, HI, Talebizadehsardari, P. A new approach for employing multiple PCMs in the passive thermal management of photovoltaic modules. Solar Energy 2021; 222: 160–174. DOI: 10.1016/j.solener.2021.04.044.
  • [19] Naderi, M, Ziapour, BM, Gendeshmin, MY. Improvement of photocells by the integration of phase change materials and thermoelectric generators (PV-PCM-TEG) and study on the ability to generate electricity around the clock. Journal of Energy Storage 2021; 36: 102384. DOI: 10.1016/j.est.2021.102384.
  • [20] Sudhakar, P, Santosh, R, Asthalakshmi, B, Kumaresan, G, Velraj, R. Performance augmentation of solar photovoltaic panel through PCM integrated natural water circulation cooling technique. Renewable Energy 2021; 172: 1433–1448. DOI: 10.1016/j.renene.2020.11.138.
  • [21] Carmona, M, Palacio Bastos, A, García, JD. Experimental evaluation of a hybrid photovoltaic and thermal solar energy collector with integrated phase change material (PVT-PCM) in comparison with a traditional photovoltaic (PV) module. Renewable Energy 2021; 172: 680–696. DOI: 10.1016/j.renene.2021.03.022.
  • [22] Du, Y, Le, N.C.H, Chen, D, Chen, H, Zhu, Y. Thermal management of solar cells using a nano-coated heat pipe plate: an indoor experimental study. International Journal of Energy Research 2017; 41: 867–876. DOI: 10.1002/er.3678.
  • [23] Soliman, AMA, Hassan, H, An experimental work on the performance of solar cell cooled by flat heat pipe. Journal of Thermal Analysis and Calorimetry 2020. DOI: 10.1007/s10973-020-10102-5.
  • [24] Jouhara, H, Szulgowska-Zgrzywa, M Sayegh, MA, Milko, J, Danielewicz, J, Nannou, TK, Lester, SP. The performance of a heat pipe based solar PV/T roof collector and its potential contribution in district heating applications. Energy 2017; 136: 117–125. DOI: 10.1016/j.energy.2016.04.070.
  • [25] Han, X, Zhao, X, Chen, X. Design and analysis of a concentrating PV/T system with nanofluid based spectral beam splitter and heat pipe cooling. Renewable Energy 2020; 162: 55–70. DOI: 10.1016/j.renene.2020.07.131.
  • [26] Shittu, S, Li, G, Zhao, X, Zhou, X, Ma, X, Akhlaghi, YG. Experimental study and exergy analysis of photovoltaic-thermoelectric with flat plate micro-channel heat pipe. Energy Conversion and Management 2020; 207. DOI: 10.1016/j.enconman.2020.112515.
  • [27] Gang, P, Huide, F, Jie, J, Tin-Tai, C, Tao, Z. Annual analysis of heat pipe PV/T systems for domestic hot water and electricity production. Energy Conversion and Management 2012; 56: 8–21. DOI: 10.1016/j.enconman.2011.11.011.
  • [28] Gang, P, Huide, F, Tao, Z, Jie, J. A numerical and experimental study on a heat pipe PV/T system. Solar Energy 2011; 85: 911–921. DOI: 10.1016/j.solener.2011.02.006.
  • [29] Weng, Y.C, Cho, H.P, Chang, C.C, Chen, S.L. Heat pipe with PCM for electronic cooling. Applied Energy 2011; 88: 1825–1833. DOI: 10.1016/j.apenergy.2010.12.004.
  • [30] Krishna, J, Kishore, PS, Solomon, AB. Heat pipe with nano enhanced-PCM for electronic cooling application. Experimental Thermal and Fluid Science 2017; 81: 84–92, DOI: 10.1016/j.expthermflusci.2016.10.014.
  • [31] Behi, H, Ghanbarpour, M, Behi, M. Investigation of PCM-assisted heat pipe for electronic cooling. Applied Thermal Engineering 2016; 127: 1132–1142, https://doi.org/10.1016/j.applthermaleng.2017.08.109.
  • [32] Putra, N, Sandi, AF, Ariantara, B, Abdullah, N, Indra Mahlia, TM. Performance of beeswax phase change material (PCM) and heat pipe as passive battery cooling system for electric vehicles. Case Studies in Thermal Engineering 2020; 21: 100655. DOI: 10.1016/j.csite.2020.100655.
  • [33] Behi, X, Karimi, D, Gandoman, FH, Akbarzadeh, M, Khaleghi, S, Kalogiannis, T, Hosen, MS, Jaguemont, J, Van Mierlo, J, Berecibar, M. PCM assisted heat pipe cooling system for the thermal management of an LTO cell for high-current profiles. Case Studies in Thermal Engineering 2021; 25: 100920. DOI: 10.1016/j.csite.2021.100920..
  • [34] Wu, W, Yang, X, Zhang, G, Chen, K, Wang, S. Experimental investigation on the thermal performance of heat pipe-assisted phase change material based battery thermal management system. Energy Conversion and Management 2017; 138: 486–492. DOI: 10.1016/j.enconman.2017.02.022.
  • [35] Sweidan, A, Ghaddar, N, Ghali, K. Optimized design and operation of heat-pipe photovoltaic thermal system with phase change material for thermal storage. Journal of Renewable and Sustainable Energy 2016, 8. DOI: 10.1063/1.4943091.
  • [36] Gad, R, Mahmoud, H, Ookawara, S, Hassan, H. Energy , exergy , and economic assessment of thermal regulation of PV panel using hybrid heat pipe-phase change material cooling system. Journal of Cleaner Production 2022; 364: 132489, DOI: 10.1016/j.jclepro.2022.132489.
  • [37] Saad, A, Xu, L, Dong, J, Cheng, P. A novel heat sink for cooling photovoltaic systems using convex / concave dimples and multiple PCMs. Applied Thermal Engineering 2022; 215. DOI: 10.1016/j.applthermaleng.2022.119001.
  • [38] Wu, W, Yang, X, Zhang, G, Chen, K, Wang, S. Experimental investigation on the thermal performance of heat pipe-assisted phase change material based battery thermal management system. Energy Conversion and Management 2017; 138: 486–492, DOI: 10.1016/j.enconman.2017.02.022.
  • [39] Zhou, J, Yi, Q, Wang, Y, Ye, Z. Temperature distribution of photovoltaic module based on finite element simulation. Solar Energy 2015; 111: 97–103, DOI: 10.1016/j.solener.2014.10.040.
  • [40] Notton, G, Cristofari, C, Mattei, M, Poggi, P. Modelling of a double-glass photovoltaic module using finite differences. Applied Thermal Engineering 2005; 25: 2854–2877. DOI: 10.1016/j.applthermaleng.2005.02.008.
  • [41] Soliman, AMA, Hassan, H, Ahmed, M, Ookawara, S. A 3d model of the effect of using heat spreader on the performance of photovoltaic panel (PV). Mathematics and Computers in Simulation 2018. DOI: 10.1016/j.matcom.2018.05.011.
  • [42] Soliman, AMA, Hassan, H, Ookawara, S. An experimental study of the performance of the solar cell with heat sink cooling system. Energy Procedia 2019; 162: 127–135. DOI: 10.1016/j.egypro.2019.04.014.
  • [43] Zohuri, B. Heat pipe design and technology. Springer 2011. DOI: 10.1201/b10806.
  • [44] Hassan, H, Harmand, S. Effect of using nanofluids on the performance of rotating heat pipe. Applied Mathematical Modelling 2015; 39: 4445–4462. DOI: 10.1016/j.apm.2014.12.023.
  • [45] Gad, R, Mahmoud, H, Ookawara, S, Hassan, H. Evaluation of thermal management of photovoltaic solar cell via hybrid cooling system of phase change material inclusion hybrid nanoparticles coupled with flat heat pipe. Journal of Energy Storage 2023; 57: 106–185. DOI: 10.1016/j.est.2022.106185.
  • [46] Makki, A, Omer, S, Su, Y, Sabir, H. Numerical investigation of heat pipe-based photovoltaic-thermoelectric generator (HP-PV/TEG) hybrid system. Energy Conversion and Management 2016; 112: 274–287. DOI: 10.1016/j.enconman.2015.12.069.
  • [47] Churchill, SW, Chu, HHS. Correlating equations for laminar and turbulent free convection from a vertical plate. International Journal of Heat and Mass Transfer 1975; 18: 1323–1329. DOI: 10.1016/0017-9310(75)90243-4.
  • [48] Soliman, AS, Radwan, A, Xu, L, Dong, J, Cheng, P. Energy harvesting in diesel engines to avoid cold start-up using phase change materials. Case Studies in Thermal Engineering 2022; 31. DOI: 10.1016/j.csite.2022.101807.
  • [49] Atkin, P, Farid, MM. Improving the efficiency of photovoltaic cells using PCM infused graphite and aluminium fins. Solar Energy 2015; 114: 217–228. DOI: 10.1016/j.solener.2015.01.037.
  • [50] Soliman, AS, Zhu, S, Xu, L, Dong, J, Cheng, P. Numerical simulation and experimental verification of constrained melting of phase change material in cylindrical enclosure subjected to a constant heat flux. Journal of Energy Storage 2021; 35. DOI: 10.1016/j.est.2021.102312.
  • [51] Hassan, H, Shafey, NYA. 3D study of convection-radiation heat transfer of electronic chip inside enclosure cooled by heat sink. International Journal of Thermal Science 2021; 159: 106–585. DOI: 10.1016/j.ijthermalsci.2020.106585.
  • [52] Hassan, H, Abdel Shafey, NY, Uddin, Z, Hawwash, AA. 3D investigation on the impact of chips positions and number on their cooling inside cavity. Journal of Mechanical Science and Technology 2021; 35: 5233–5244. DOI: 10.1007/s12206-021-1040-z.
  • [53] Nada, SA, El-Nagar, DH, Hussein, HMS. Improving the thermal regulation and efficiency enhancement of PCM-Integrated PV modules using nano particles. Energy Conversion and Management 2018; 166: 735–743. DOI: 10.1016/j.enconman.2018.04.035.
  • [54] Sharaf, M, Yousef, MS, Huzayyin, AS. Year-round energy and exergy performance investigation of a photovoltaic panel coupled with metal foam/phase change material composite. Renewable Energy 2022; 189: 777–789. DOI: 10.1016/j.renene.2022.03.071.
  • [55] Yousef, MS, Sharaf, M, Huzayyin, AS. Energy, exergy, economic, and enviroeconomic assessment of a photovoltaic module incorporated with a paraffin-metal foam composite: An experimental study. Energy 2022; 238: 121–807. DOI: 10.1016/j.energy.2021.121807.
  • [56] Elsheniti, MB, Hemedah, MA, Sorour, MM, El-Maghlany, WM. Novel enhanced conduction model for predicting performance of a PV panel cooled by PCM. Energy Conversion and Management 2020; 205: 112–456. DOI: 10.1016/j.enconman.2019.112456.
Year 2023, Volume: 7 Issue: 1, 67 - 88, 31.03.2023
https://doi.org/10.30521/jes.1159281

Abstract

References

  • [1] Nasser, M, Megahed, TF, Ookawara, S, Hassan, H. Techno-economic assessment of green hydrogen production using different configurations of wind turbines and PV panels. Journal of Energy Systems 2022; 6: 560-572. DOI: 10.30521/jes.1132111.
  • [2] Soliman, AS, Xu, L, Dong, J, Cheng, P. Numerical investigation of a photovoltaic module under different weather conditions. Energy Reports 2022; 8: 1045–1058. DOI: 10.1016/j.egyr.2022.10.348.
  • [3] Browne, MC, Norton, B, McCormack, SJ. Heat retention of a photovoltaic/thermal collector with PCM. Solar Energy 2016; 133: 533–548. DOI: 10.1016/j.solener.2016.04.024.
  • [4] Huang, MJ, Eames, PC, Norton, B. Thermal regulation of building-integrated photovoltaics using phase change materials. International Journal of Heat and Mass Transfer 2004; 47: 2715–2733. DOI: 10.1016/j.ijheatmasstransfer.2003.11.015.
  • [5] Nasef, HA, Hassan, H, Mori, S, Nada, SA. Experimental investigation on the performance of parallel and staggered arrays of PCM energy storage system for PV thermal regulation. Energy Conversion and Management 2021; 254: 115143. DOI: 10.1016/j.enconman.2021.115143.
  • [6] Wu, SY, Zhang, QL, Xiao, L, Guo, FH. A heat pipe photovoltaic/thermal (PV/T) hybrid system and its performance evaluation. Energy and Buildings 2011: 43: 3558–3567. DOI: 10.1016/j.enbuild.2011.09.017.
  • [7] Bahaidarah, HMS, Baloch, AAB, Gandhidasan, P. Uniform cooling of photovoltaic panels: A review. Renewable and Sustainable Energy Reviews 2016, 57, 1520–1544. DOI: 10.1016/j.rser.2015.12.064.
  • [8] Tan, L, Date, A, Fernandes, G, Singh, B, Ganguly, S. Efficiency Gains of Photovoltaic System Using Latent Heat Thermal Energy Storage. Energy Procedia 2017; 110: 83–88. DOI: 10.1016/j.egypro.2017.03.110.
  • [9] Said, MA, Hassan, H. A study on the thermal energy storage of different phase change materials incorporated with the condenser of air-conditioning unit and their effect on the unit performance. Energy and Building 2019; 202. DOI: 10.1016/j.enbuild.2019.109353.
  • [10] Soliman, AS, Zhu, S, Xu, L, Dong, J, Cheng, P. Design of an H2O-LiBr absorption system using PCMs and powered by automotive exhaust gas. Applied Thermal Engineering 2021; 191. DOI: 10.1016/j.applthermaleng.2021.116881.
  • [11] Ismail, M, Zahra, WK, Ookawara, S, Hassan, H. Boosting the air conditioning unit performance using phase change material : Impact of system configuration. Journal of Energy Storage 2022; 56: 105864. DOI: 10.1016/j.est.2022.105864.
  • [12] Soliman, AS, Zhu, S, Xu, L, Dong, J, Cheng, P. Melting enhancement of nano-phase change material in cylindrical enclosure using convex/concave dimples: Numerical simulation with experimental validation, Journal of Energy Storage 2021; 44. DOI: 10.1016/j.est.2021.103470.
  • [13] Zalba, B, Marin, JM, Cabeza, LF, Mehling, H. Review on thermal energy storage with phase change: materials, heat transfer analysis and applications, Applied Thermal Engineering 2003; 23: 251-283. DOI: 10.1016/S1359-4311(02)00192-8.
  • [14] Kumar, R, Praveen, P, Gupta, S, Saikiran, J, Bharj, RS. Performance evaluation of photovoltaic module integrated with phase change material-filled container with external fins for extremely hot climates. Journal of Energy Storage 2020; 32: 101876. DOI: 10.1016/j.est.2020.101876.
  • [15] Qasim, MA, Ali, HM, Khan, MN, Arshad, N, Khaliq, D, Ali, Z, Janjua, MM. The effect of using hybrid phase change materials on thermal management of photovoltaic panels – An experimental study. Solar Energy 2020; 209: 415–423. DOI: 10.1016/j.solener.2020.09.027.
  • [16] Savvakis, N, Dialyna, E, Tsoutsos, T. Investigation of the operational performance and efficiency of an alternative PV + PCM concept. Solar Energy 2020; 211: 1283–1300. DOI: 10.1016/j.solener.2020.10.053.
  • [17] Ho, CJ, Chou, WL, Lai, CM. Thermal and electrical performances of a water-surface floating PV integrated with double water-saturated MEPCM layers. Applied Thermal Engineering 2016; 94: 122–132. DOI: 10.1016/j.applthermaleng.2015.10.097.
  • [18] Mahdi, JM, Mohammed, HI, Talebizadehsardari, P. A new approach for employing multiple PCMs in the passive thermal management of photovoltaic modules. Solar Energy 2021; 222: 160–174. DOI: 10.1016/j.solener.2021.04.044.
  • [19] Naderi, M, Ziapour, BM, Gendeshmin, MY. Improvement of photocells by the integration of phase change materials and thermoelectric generators (PV-PCM-TEG) and study on the ability to generate electricity around the clock. Journal of Energy Storage 2021; 36: 102384. DOI: 10.1016/j.est.2021.102384.
  • [20] Sudhakar, P, Santosh, R, Asthalakshmi, B, Kumaresan, G, Velraj, R. Performance augmentation of solar photovoltaic panel through PCM integrated natural water circulation cooling technique. Renewable Energy 2021; 172: 1433–1448. DOI: 10.1016/j.renene.2020.11.138.
  • [21] Carmona, M, Palacio Bastos, A, García, JD. Experimental evaluation of a hybrid photovoltaic and thermal solar energy collector with integrated phase change material (PVT-PCM) in comparison with a traditional photovoltaic (PV) module. Renewable Energy 2021; 172: 680–696. DOI: 10.1016/j.renene.2021.03.022.
  • [22] Du, Y, Le, N.C.H, Chen, D, Chen, H, Zhu, Y. Thermal management of solar cells using a nano-coated heat pipe plate: an indoor experimental study. International Journal of Energy Research 2017; 41: 867–876. DOI: 10.1002/er.3678.
  • [23] Soliman, AMA, Hassan, H, An experimental work on the performance of solar cell cooled by flat heat pipe. Journal of Thermal Analysis and Calorimetry 2020. DOI: 10.1007/s10973-020-10102-5.
  • [24] Jouhara, H, Szulgowska-Zgrzywa, M Sayegh, MA, Milko, J, Danielewicz, J, Nannou, TK, Lester, SP. The performance of a heat pipe based solar PV/T roof collector and its potential contribution in district heating applications. Energy 2017; 136: 117–125. DOI: 10.1016/j.energy.2016.04.070.
  • [25] Han, X, Zhao, X, Chen, X. Design and analysis of a concentrating PV/T system with nanofluid based spectral beam splitter and heat pipe cooling. Renewable Energy 2020; 162: 55–70. DOI: 10.1016/j.renene.2020.07.131.
  • [26] Shittu, S, Li, G, Zhao, X, Zhou, X, Ma, X, Akhlaghi, YG. Experimental study and exergy analysis of photovoltaic-thermoelectric with flat plate micro-channel heat pipe. Energy Conversion and Management 2020; 207. DOI: 10.1016/j.enconman.2020.112515.
  • [27] Gang, P, Huide, F, Jie, J, Tin-Tai, C, Tao, Z. Annual analysis of heat pipe PV/T systems for domestic hot water and electricity production. Energy Conversion and Management 2012; 56: 8–21. DOI: 10.1016/j.enconman.2011.11.011.
  • [28] Gang, P, Huide, F, Tao, Z, Jie, J. A numerical and experimental study on a heat pipe PV/T system. Solar Energy 2011; 85: 911–921. DOI: 10.1016/j.solener.2011.02.006.
  • [29] Weng, Y.C, Cho, H.P, Chang, C.C, Chen, S.L. Heat pipe with PCM for electronic cooling. Applied Energy 2011; 88: 1825–1833. DOI: 10.1016/j.apenergy.2010.12.004.
  • [30] Krishna, J, Kishore, PS, Solomon, AB. Heat pipe with nano enhanced-PCM for electronic cooling application. Experimental Thermal and Fluid Science 2017; 81: 84–92, DOI: 10.1016/j.expthermflusci.2016.10.014.
  • [31] Behi, H, Ghanbarpour, M, Behi, M. Investigation of PCM-assisted heat pipe for electronic cooling. Applied Thermal Engineering 2016; 127: 1132–1142, https://doi.org/10.1016/j.applthermaleng.2017.08.109.
  • [32] Putra, N, Sandi, AF, Ariantara, B, Abdullah, N, Indra Mahlia, TM. Performance of beeswax phase change material (PCM) and heat pipe as passive battery cooling system for electric vehicles. Case Studies in Thermal Engineering 2020; 21: 100655. DOI: 10.1016/j.csite.2020.100655.
  • [33] Behi, X, Karimi, D, Gandoman, FH, Akbarzadeh, M, Khaleghi, S, Kalogiannis, T, Hosen, MS, Jaguemont, J, Van Mierlo, J, Berecibar, M. PCM assisted heat pipe cooling system for the thermal management of an LTO cell for high-current profiles. Case Studies in Thermal Engineering 2021; 25: 100920. DOI: 10.1016/j.csite.2021.100920..
  • [34] Wu, W, Yang, X, Zhang, G, Chen, K, Wang, S. Experimental investigation on the thermal performance of heat pipe-assisted phase change material based battery thermal management system. Energy Conversion and Management 2017; 138: 486–492. DOI: 10.1016/j.enconman.2017.02.022.
  • [35] Sweidan, A, Ghaddar, N, Ghali, K. Optimized design and operation of heat-pipe photovoltaic thermal system with phase change material for thermal storage. Journal of Renewable and Sustainable Energy 2016, 8. DOI: 10.1063/1.4943091.
  • [36] Gad, R, Mahmoud, H, Ookawara, S, Hassan, H. Energy , exergy , and economic assessment of thermal regulation of PV panel using hybrid heat pipe-phase change material cooling system. Journal of Cleaner Production 2022; 364: 132489, DOI: 10.1016/j.jclepro.2022.132489.
  • [37] Saad, A, Xu, L, Dong, J, Cheng, P. A novel heat sink for cooling photovoltaic systems using convex / concave dimples and multiple PCMs. Applied Thermal Engineering 2022; 215. DOI: 10.1016/j.applthermaleng.2022.119001.
  • [38] Wu, W, Yang, X, Zhang, G, Chen, K, Wang, S. Experimental investigation on the thermal performance of heat pipe-assisted phase change material based battery thermal management system. Energy Conversion and Management 2017; 138: 486–492, DOI: 10.1016/j.enconman.2017.02.022.
  • [39] Zhou, J, Yi, Q, Wang, Y, Ye, Z. Temperature distribution of photovoltaic module based on finite element simulation. Solar Energy 2015; 111: 97–103, DOI: 10.1016/j.solener.2014.10.040.
  • [40] Notton, G, Cristofari, C, Mattei, M, Poggi, P. Modelling of a double-glass photovoltaic module using finite differences. Applied Thermal Engineering 2005; 25: 2854–2877. DOI: 10.1016/j.applthermaleng.2005.02.008.
  • [41] Soliman, AMA, Hassan, H, Ahmed, M, Ookawara, S. A 3d model of the effect of using heat spreader on the performance of photovoltaic panel (PV). Mathematics and Computers in Simulation 2018. DOI: 10.1016/j.matcom.2018.05.011.
  • [42] Soliman, AMA, Hassan, H, Ookawara, S. An experimental study of the performance of the solar cell with heat sink cooling system. Energy Procedia 2019; 162: 127–135. DOI: 10.1016/j.egypro.2019.04.014.
  • [43] Zohuri, B. Heat pipe design and technology. Springer 2011. DOI: 10.1201/b10806.
  • [44] Hassan, H, Harmand, S. Effect of using nanofluids on the performance of rotating heat pipe. Applied Mathematical Modelling 2015; 39: 4445–4462. DOI: 10.1016/j.apm.2014.12.023.
  • [45] Gad, R, Mahmoud, H, Ookawara, S, Hassan, H. Evaluation of thermal management of photovoltaic solar cell via hybrid cooling system of phase change material inclusion hybrid nanoparticles coupled with flat heat pipe. Journal of Energy Storage 2023; 57: 106–185. DOI: 10.1016/j.est.2022.106185.
  • [46] Makki, A, Omer, S, Su, Y, Sabir, H. Numerical investigation of heat pipe-based photovoltaic-thermoelectric generator (HP-PV/TEG) hybrid system. Energy Conversion and Management 2016; 112: 274–287. DOI: 10.1016/j.enconman.2015.12.069.
  • [47] Churchill, SW, Chu, HHS. Correlating equations for laminar and turbulent free convection from a vertical plate. International Journal of Heat and Mass Transfer 1975; 18: 1323–1329. DOI: 10.1016/0017-9310(75)90243-4.
  • [48] Soliman, AS, Radwan, A, Xu, L, Dong, J, Cheng, P. Energy harvesting in diesel engines to avoid cold start-up using phase change materials. Case Studies in Thermal Engineering 2022; 31. DOI: 10.1016/j.csite.2022.101807.
  • [49] Atkin, P, Farid, MM. Improving the efficiency of photovoltaic cells using PCM infused graphite and aluminium fins. Solar Energy 2015; 114: 217–228. DOI: 10.1016/j.solener.2015.01.037.
  • [50] Soliman, AS, Zhu, S, Xu, L, Dong, J, Cheng, P. Numerical simulation and experimental verification of constrained melting of phase change material in cylindrical enclosure subjected to a constant heat flux. Journal of Energy Storage 2021; 35. DOI: 10.1016/j.est.2021.102312.
  • [51] Hassan, H, Shafey, NYA. 3D study of convection-radiation heat transfer of electronic chip inside enclosure cooled by heat sink. International Journal of Thermal Science 2021; 159: 106–585. DOI: 10.1016/j.ijthermalsci.2020.106585.
  • [52] Hassan, H, Abdel Shafey, NY, Uddin, Z, Hawwash, AA. 3D investigation on the impact of chips positions and number on their cooling inside cavity. Journal of Mechanical Science and Technology 2021; 35: 5233–5244. DOI: 10.1007/s12206-021-1040-z.
  • [53] Nada, SA, El-Nagar, DH, Hussein, HMS. Improving the thermal regulation and efficiency enhancement of PCM-Integrated PV modules using nano particles. Energy Conversion and Management 2018; 166: 735–743. DOI: 10.1016/j.enconman.2018.04.035.
  • [54] Sharaf, M, Yousef, MS, Huzayyin, AS. Year-round energy and exergy performance investigation of a photovoltaic panel coupled with metal foam/phase change material composite. Renewable Energy 2022; 189: 777–789. DOI: 10.1016/j.renene.2022.03.071.
  • [55] Yousef, MS, Sharaf, M, Huzayyin, AS. Energy, exergy, economic, and enviroeconomic assessment of a photovoltaic module incorporated with a paraffin-metal foam composite: An experimental study. Energy 2022; 238: 121–807. DOI: 10.1016/j.energy.2021.121807.
  • [56] Elsheniti, MB, Hemedah, MA, Sorour, MM, El-Maghlany, WM. Novel enhanced conduction model for predicting performance of a PV panel cooled by PCM. Energy Conversion and Management 2020; 205: 112–456. DOI: 10.1016/j.enconman.2019.112456.
There are 56 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Research Articles
Authors

Ramadan Gad 0000-0003-3297-3504

Hatem Mahmoud 0000-0002-4547-5312

Shinichi Ookawara 0000-0002-7912-3403

Hamdy Hassan 0000-0002-0156-7186

Publication Date March 31, 2023
Acceptance Date November 8, 2022
Published in Issue Year 2023 Volume: 7 Issue: 1

Cite

Vancouver Gad R, Mahmoud H, Ookawara S, Hassan H. Impact of PCM type on photocell performance using heat pipe-PCM cooling system: A numerical study. Journal of Energy Systems. 2023;7(1):67-88.

Cited By








Journal of Energy Systems is the official journal of 

European Conference on Renewable Energy Systems (ECRES8756 and


Electrical and Computer Engineering Research Group (ECERG)  8753


Journal of Energy Systems is licensed under CC BY-NC 4.0