Research Article
BibTex RIS Cite
Year 2023, Volume: 7 Issue: 2, 222 - 243, 30.06.2023
https://doi.org/10.30521/jes.1205696

Abstract

References

  • [1] Lipu, M.S.H., Mamun, A.A., Ansari, S., Miah, M.S., Hasan, K., Meraj, S.T., Abdolrasol, M.G.M., Rahman, T., Maruf, M.H., Sarker, M.R., Aljanad, A., Tan, N.M.L. Battery Management, Key Technologies, Methods, Issues, and Future Trends of Electric Vehicles: A Pathway toward Achieving Sustainable Development Goals. Batteries 2022; 8(9):119. https://doi.org/10.3390/batteries8090119.
  • [2] Xiong, S., Wenxian Y., Yingfu G., Kexiang W., Bo Q., Guanghui Z. A reliability study of electric vehicle battery from the perspective of power supply system. Journal of Power Sources, 2020;451(1);227805. https://doi.org/10.1016/j.jpowsour.2020.227805.
  • [3] Fan, Y., Yuanyuan, X., Yelin, D., Chris, Y. Impacts of battery degradation on state-level energy consumption and GHG emissions from electric vehicle operation in the United States. Procedia CIRP 2019; 80: 530-535, ISSN 2212-8271, DOI:10.1016/j.procir.2018.12.010
  • [4] Barhate, S.S., Mudhalwadkar, R. Proton exchange membrane fuel cell fault and degradation detection using a coefficient of variance method. Journal of Energy Systems 2021; 5(1), 20-34, DOI: 10.30521/jes.817879
  • [5] Paterson, S., Vijayaratnam, P., Perera C., Doig, G. Design and development of the Sunswift eVe solar vehicle: a record-breaking electric car. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering 2016; 230(14):1972-1986. DOI:10.1177/0954407016630153.
  • [6] Ben Said-Romdhane, M., Skander-Mustapha, S. A Review on Vehicle-Integrated Photovoltaic Panels. In: Motahhir, S., Eltamaly, A.M. (eds) Advanced Technologies for Solar Photovoltaics Energy Systems. Green Energy and Technology. Springer, Cham, 2021. https://doi.org/10.1007/978-3-030-64565-6_12.
  • [7] Cuce, E., Cuce, P.M., Bali, T. Impact of humidity on current parameters of solar cells. Journal of Energy Systems 2018; 2(3): 84-96, DOI: 10.30521/jes.441643.
  • [8] Yılmaz Ekinci, S., Atun Sancaklı, S., Law, A.M., Walls, J.M. Performance and durability of thin film solar cells via testing the abrasion resistance of broadband anti-reflection coatings. Journal of Energy Systems 2022; 6(1): 33-45, DOI: 10.30521/jes.952231
  • [9] Zaidi, A., Barambones, O., Charaabi, A., Zanzouri, N. Fault Tolerant Robust Passivity-Based Control Design for a Proton Exchange Membrane Fuel Cell Power Supply. Journal of Energy Resources Technology 2022; 144(10):101304.
  • [10] Reshma Gopi, R., Sreejith, S. Converter topologies in photovoltaic applications: A review. Renewable and Sustainable Energy Reviews 2018; 94: 1-14. DOI :10.1016/j.rser.2018.05.047
  • [11] Luchetta, A., Manetti, S., Piccirilli, M.C., Alberto and al. Comparison of dcm operated pwm dc-dc converter modelling methods including the effects of parasitic components on duty ratio constraint. In: IEEE 15th International Conference on Environment and Electrical Engineering (EEEIC); 10-13 June 2015: IEEE; 766-771.
  • [12] Reatti, A., Corti, F., Tesi, A., Torlai A., Kazimierczuk, M.K. Effect of parasitic components on dynamic performance of power stages of DC-DC pwm buck and boost converters in ccm. In: IEEE International Symposium on Circuits and Systems (ISCAS); 26-29 May 2019: IEEE,1-5.
  • [13] Sheik Mohammed, S., Devaraj, D. Simulation of incremental conductance MPPT based two phase interleaved boost converter using MATLAB/simulink. In: IEEE International Conference on Electrical, Computer and Communication Technologies (ICECCT); 5-7 March 2015: IEEE. DOI: 10.1109/ICECCT.2015.7225987
  • [14] Swamy, H.M.M., Guruswamy, K.P., Singh, S.P. Design, Modeling and Analysis of Two Level Interleaved Boost Converter. In: International Conference on Machine Intelligence and Research Advancement; 21-23 December 2013: IEEE; 509-514. DOI :10.1109/icmira.2013.107
  • [15] Thounthong, P., Mungporn, P., Guilbert, D., Takorabet, N., pierfederici, S, Nahid-Mobaraked, B., Hu, Y., Bizon, N., Huangfu, Y., Kuman, P. Design and control of multiphase interleaved boost converters-based on differential flatness theory for PEM fuel cell multi-stack applications. International Journal of Electrical Power and Energy Systems 2021; 124:106346. DOI:10.1016/j.ijepes.2020.106346
  • [16] Olmos-Lopez, A., Guerrero, G., Arau J., Aguilar C., Yris J. C. Passivity-based control for current sharing in PFC interleaved boost converters. In: Twenty-Sixth Annual IEEE Applied Power Electronics Conference and Exposition (APEC); 06-11 March 2011; IEEE, 475-480. DOI :10.1109/apec.2011.5744639
  • [17] Kamaraj, P.,Thamizharasu, T., Priya, M.V.,Voltage regulation of soft switched interleaved boost converter using fuzzy proportional integral controller. Journal of Energy Systems 2020, 4(4), 145-160, DOI:10.30521/jes.762506.
  • [18] Charaabi, A., Barambones, O., Zaidi, A., Zanzouri, N. A Novel Two Stage Controller for a DC-DC Boost Converter to Harvest Maximum Energy from the PV Power Generation. Actuators 2020; 9(2):29. DOI:10.3390/act9020029.
  • [19] Premchand, M., Gudey, S.K. Electric vehicle operation modes with reactive power support using SMC in distribution generation. Journal of Energy Systems 2020; 4(3): 96-120, DOI: 10.30521/jes.731845.
  • [20] Saheb, S.S., Gudey, S.K. Robust fractional order sliding mode control for solar based DC AC inverter. Journal of Energy Systems 2020; 4(4): 161-178, DOI: 10.30521/jes.737264.
  • [21] Charaabi, A., Zaidi, A., Zanzouri, N. Dual loop control of DC-DC boost converter based cascade sliding mode control. In: International Conference on Green Energy Conversion Systems (GECS); 23-25 March 2017: IEEE, 1-6. DOI: 10.1109/GECS.2017.8066151
  • [22] Wu, C., Sehab, R., Akrad, A., Morel, C. Fault Diagnosis Methods and Fault Tolerant Control Strategies for the Electric Vehicle Powertrains. Energies 2022;15(13): 4840. https://doi.org/10.3390/en15134840
  • [23] Zenteno-Torres, J., Cieslak,J., Davila, J., Henry, D. Sliding Mode Control with Application to Fault-olerant Control: Assessment and Open Problems. Automation 2021; 2: 1–30. DOI :10.3390/automation2010001
  • [24] Sri Revathi, B., Mahalingam, P., Gonzalez-Longatt, F. Interleaved high gain DC-DC converter for integrating solar PV source to DC bus. Solar Energy 2019; 188: 924-934.
  • [25] Hafez, A.A., Hatata, A.Y., Alsubaihi, M.I., Alotaibi, R.M., Alqahtani, F.R., Alotaibi, S.O., Alhusayni, A.M., Alharbi, M.D. High Power Interleaved Boost Converter for Photovoltaic Applications. Journal of Power and Energy Engineering 2018; 6(5):1-17.
  • [26] Jung, D.Y., Ji, Y.H., Park, S.H., Jung, Y.C., Won, C.Y. Interleaved Soft-Switching Boost Converter for Photovoltaic Power-Generation System. IEEE Transactions on Power Electronics 2011; 26(4):1137-1145.
  • [27] Yang, F, Ruan, X, Wu G, and Ye Z. Discontinuous-current mode operation of a two-phase interleaved boost dc-dc converter with coupled inductor. IEEE Transactions on Power Electronics 2018; 33(1):188-198.
  • [28] Balci, S., Sabanci, K. Performance analysis in a two-phase interleaved DC-DC boost converter with coupled inductors. International Journal of Applied Mathematics Electronics and Computers. 2022; 10(4): 76-83.
  • [29] Jantharamin, N., Zhang, L. Analysis of Multiphase Interleaved Converter by using State-space Averaging Technique. In: ECTI-CON 6th international conference publications; 06-09 May 2009: IEEE, 288-291.
  • [30] Bougrine, M., Benmiloud, M., Benalia, A., Delaleau, E., Benbouzid, M. Load estimator-based hybrid controller design for two-interleaved boost converter dedicated to renewable energy and automotive applications. ISA Transactions 2016; 66:425-436.
  • [31] Cisneros, R, Pirro, M., Bergna G., Ortega, R., Ippoliti, G., Molinas, M. Global tracking passivity-based PI control of bilinear systems : Application to the interleaved boost and modular multilevel converters. Control Engineering Practice 2015; 43:109-119.
  • [32] Liangcai, X., Yigeng, H., Qian, L., Rui, M., Dongdong, Z., Qingchao, Z. Robust Control of a Interleaved Boost Converter Which Feeds a Constant Power Load for Electric Vehicles. In: IEEE Transportation Electrification Conference and Expo (ITEC); 19-21 June 2019: IEEE, DOI: 10.1109/ITEC.2019.8790527
  • [33] Chen, Z., Gao, W., Hu, J., Ye, X. Closed-Loop Analysis and Cascade Control of a Non-minimum Phase Boost Converter. IEEE Transactions on Power Electronics 2011; 26(4):1237-1252.
  • [34] Utkin, V.I. Variable structure systems with sliding modes. IEEE Transactions on Automatic Control 1977; 22: 211-222.
  • [35] Sira-Ramirez, H. Sliding mode control: The Delta sigma Modulation Approach. Springer International Publishing AG Switzerland 2015.
  • [36] Slotine, J-J E. Sliding controller design for non-linear systems. International Journal of Control 1948; 40(2):421-434. DOI: 10.1080/00207178408933284

Cascade sliding mode control implementation in photovoltaic power supply for camping-car applications

Year 2023, Volume: 7 Issue: 2, 222 - 243, 30.06.2023
https://doi.org/10.30521/jes.1205696

Abstract

A cascade proportional integral sliding mode control for a two-stage interleaved boost converter (2IBC) serving as a reliable supplementary power source for camping-car applications is reported. Unlike the active fault-tolerant control approaches used for interleaved boost converters, which require controller reconfiguration, the proposed control scheme is passive fault-tolerant and does not require reconfiguration in the event of a faulty stage. The 2IBC model is analyzed together with the most important parasitic parameters, then, the averaged state-space model is derived to implement the control scheme. The appropriate linear cascade control is determined by using the small-signal equivalent model and improving the robustness and dynamic performance, thereby a proportional integrator controller is replaced by a sliding mode controller. The prototype system uses a signal processor and a low-power solar panel. The control code is generated by a PSIM software and loaded to the via a code composer tool. The experimental results validate the control design and demonstrate the efficiency of the proposed control scheme. In addition, the proposed controller ensures the continuity of service in the event of a faulty stage by verifying the reliability of the power supply.

References

  • [1] Lipu, M.S.H., Mamun, A.A., Ansari, S., Miah, M.S., Hasan, K., Meraj, S.T., Abdolrasol, M.G.M., Rahman, T., Maruf, M.H., Sarker, M.R., Aljanad, A., Tan, N.M.L. Battery Management, Key Technologies, Methods, Issues, and Future Trends of Electric Vehicles: A Pathway toward Achieving Sustainable Development Goals. Batteries 2022; 8(9):119. https://doi.org/10.3390/batteries8090119.
  • [2] Xiong, S., Wenxian Y., Yingfu G., Kexiang W., Bo Q., Guanghui Z. A reliability study of electric vehicle battery from the perspective of power supply system. Journal of Power Sources, 2020;451(1);227805. https://doi.org/10.1016/j.jpowsour.2020.227805.
  • [3] Fan, Y., Yuanyuan, X., Yelin, D., Chris, Y. Impacts of battery degradation on state-level energy consumption and GHG emissions from electric vehicle operation in the United States. Procedia CIRP 2019; 80: 530-535, ISSN 2212-8271, DOI:10.1016/j.procir.2018.12.010
  • [4] Barhate, S.S., Mudhalwadkar, R. Proton exchange membrane fuel cell fault and degradation detection using a coefficient of variance method. Journal of Energy Systems 2021; 5(1), 20-34, DOI: 10.30521/jes.817879
  • [5] Paterson, S., Vijayaratnam, P., Perera C., Doig, G. Design and development of the Sunswift eVe solar vehicle: a record-breaking electric car. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering 2016; 230(14):1972-1986. DOI:10.1177/0954407016630153.
  • [6] Ben Said-Romdhane, M., Skander-Mustapha, S. A Review on Vehicle-Integrated Photovoltaic Panels. In: Motahhir, S., Eltamaly, A.M. (eds) Advanced Technologies for Solar Photovoltaics Energy Systems. Green Energy and Technology. Springer, Cham, 2021. https://doi.org/10.1007/978-3-030-64565-6_12.
  • [7] Cuce, E., Cuce, P.M., Bali, T. Impact of humidity on current parameters of solar cells. Journal of Energy Systems 2018; 2(3): 84-96, DOI: 10.30521/jes.441643.
  • [8] Yılmaz Ekinci, S., Atun Sancaklı, S., Law, A.M., Walls, J.M. Performance and durability of thin film solar cells via testing the abrasion resistance of broadband anti-reflection coatings. Journal of Energy Systems 2022; 6(1): 33-45, DOI: 10.30521/jes.952231
  • [9] Zaidi, A., Barambones, O., Charaabi, A., Zanzouri, N. Fault Tolerant Robust Passivity-Based Control Design for a Proton Exchange Membrane Fuel Cell Power Supply. Journal of Energy Resources Technology 2022; 144(10):101304.
  • [10] Reshma Gopi, R., Sreejith, S. Converter topologies in photovoltaic applications: A review. Renewable and Sustainable Energy Reviews 2018; 94: 1-14. DOI :10.1016/j.rser.2018.05.047
  • [11] Luchetta, A., Manetti, S., Piccirilli, M.C., Alberto and al. Comparison of dcm operated pwm dc-dc converter modelling methods including the effects of parasitic components on duty ratio constraint. In: IEEE 15th International Conference on Environment and Electrical Engineering (EEEIC); 10-13 June 2015: IEEE; 766-771.
  • [12] Reatti, A., Corti, F., Tesi, A., Torlai A., Kazimierczuk, M.K. Effect of parasitic components on dynamic performance of power stages of DC-DC pwm buck and boost converters in ccm. In: IEEE International Symposium on Circuits and Systems (ISCAS); 26-29 May 2019: IEEE,1-5.
  • [13] Sheik Mohammed, S., Devaraj, D. Simulation of incremental conductance MPPT based two phase interleaved boost converter using MATLAB/simulink. In: IEEE International Conference on Electrical, Computer and Communication Technologies (ICECCT); 5-7 March 2015: IEEE. DOI: 10.1109/ICECCT.2015.7225987
  • [14] Swamy, H.M.M., Guruswamy, K.P., Singh, S.P. Design, Modeling and Analysis of Two Level Interleaved Boost Converter. In: International Conference on Machine Intelligence and Research Advancement; 21-23 December 2013: IEEE; 509-514. DOI :10.1109/icmira.2013.107
  • [15] Thounthong, P., Mungporn, P., Guilbert, D., Takorabet, N., pierfederici, S, Nahid-Mobaraked, B., Hu, Y., Bizon, N., Huangfu, Y., Kuman, P. Design and control of multiphase interleaved boost converters-based on differential flatness theory for PEM fuel cell multi-stack applications. International Journal of Electrical Power and Energy Systems 2021; 124:106346. DOI:10.1016/j.ijepes.2020.106346
  • [16] Olmos-Lopez, A., Guerrero, G., Arau J., Aguilar C., Yris J. C. Passivity-based control for current sharing in PFC interleaved boost converters. In: Twenty-Sixth Annual IEEE Applied Power Electronics Conference and Exposition (APEC); 06-11 March 2011; IEEE, 475-480. DOI :10.1109/apec.2011.5744639
  • [17] Kamaraj, P.,Thamizharasu, T., Priya, M.V.,Voltage regulation of soft switched interleaved boost converter using fuzzy proportional integral controller. Journal of Energy Systems 2020, 4(4), 145-160, DOI:10.30521/jes.762506.
  • [18] Charaabi, A., Barambones, O., Zaidi, A., Zanzouri, N. A Novel Two Stage Controller for a DC-DC Boost Converter to Harvest Maximum Energy from the PV Power Generation. Actuators 2020; 9(2):29. DOI:10.3390/act9020029.
  • [19] Premchand, M., Gudey, S.K. Electric vehicle operation modes with reactive power support using SMC in distribution generation. Journal of Energy Systems 2020; 4(3): 96-120, DOI: 10.30521/jes.731845.
  • [20] Saheb, S.S., Gudey, S.K. Robust fractional order sliding mode control for solar based DC AC inverter. Journal of Energy Systems 2020; 4(4): 161-178, DOI: 10.30521/jes.737264.
  • [21] Charaabi, A., Zaidi, A., Zanzouri, N. Dual loop control of DC-DC boost converter based cascade sliding mode control. In: International Conference on Green Energy Conversion Systems (GECS); 23-25 March 2017: IEEE, 1-6. DOI: 10.1109/GECS.2017.8066151
  • [22] Wu, C., Sehab, R., Akrad, A., Morel, C. Fault Diagnosis Methods and Fault Tolerant Control Strategies for the Electric Vehicle Powertrains. Energies 2022;15(13): 4840. https://doi.org/10.3390/en15134840
  • [23] Zenteno-Torres, J., Cieslak,J., Davila, J., Henry, D. Sliding Mode Control with Application to Fault-olerant Control: Assessment and Open Problems. Automation 2021; 2: 1–30. DOI :10.3390/automation2010001
  • [24] Sri Revathi, B., Mahalingam, P., Gonzalez-Longatt, F. Interleaved high gain DC-DC converter for integrating solar PV source to DC bus. Solar Energy 2019; 188: 924-934.
  • [25] Hafez, A.A., Hatata, A.Y., Alsubaihi, M.I., Alotaibi, R.M., Alqahtani, F.R., Alotaibi, S.O., Alhusayni, A.M., Alharbi, M.D. High Power Interleaved Boost Converter for Photovoltaic Applications. Journal of Power and Energy Engineering 2018; 6(5):1-17.
  • [26] Jung, D.Y., Ji, Y.H., Park, S.H., Jung, Y.C., Won, C.Y. Interleaved Soft-Switching Boost Converter for Photovoltaic Power-Generation System. IEEE Transactions on Power Electronics 2011; 26(4):1137-1145.
  • [27] Yang, F, Ruan, X, Wu G, and Ye Z. Discontinuous-current mode operation of a two-phase interleaved boost dc-dc converter with coupled inductor. IEEE Transactions on Power Electronics 2018; 33(1):188-198.
  • [28] Balci, S., Sabanci, K. Performance analysis in a two-phase interleaved DC-DC boost converter with coupled inductors. International Journal of Applied Mathematics Electronics and Computers. 2022; 10(4): 76-83.
  • [29] Jantharamin, N., Zhang, L. Analysis of Multiphase Interleaved Converter by using State-space Averaging Technique. In: ECTI-CON 6th international conference publications; 06-09 May 2009: IEEE, 288-291.
  • [30] Bougrine, M., Benmiloud, M., Benalia, A., Delaleau, E., Benbouzid, M. Load estimator-based hybrid controller design for two-interleaved boost converter dedicated to renewable energy and automotive applications. ISA Transactions 2016; 66:425-436.
  • [31] Cisneros, R, Pirro, M., Bergna G., Ortega, R., Ippoliti, G., Molinas, M. Global tracking passivity-based PI control of bilinear systems : Application to the interleaved boost and modular multilevel converters. Control Engineering Practice 2015; 43:109-119.
  • [32] Liangcai, X., Yigeng, H., Qian, L., Rui, M., Dongdong, Z., Qingchao, Z. Robust Control of a Interleaved Boost Converter Which Feeds a Constant Power Load for Electric Vehicles. In: IEEE Transportation Electrification Conference and Expo (ITEC); 19-21 June 2019: IEEE, DOI: 10.1109/ITEC.2019.8790527
  • [33] Chen, Z., Gao, W., Hu, J., Ye, X. Closed-Loop Analysis and Cascade Control of a Non-minimum Phase Boost Converter. IEEE Transactions on Power Electronics 2011; 26(4):1237-1252.
  • [34] Utkin, V.I. Variable structure systems with sliding modes. IEEE Transactions on Automatic Control 1977; 22: 211-222.
  • [35] Sira-Ramirez, H. Sliding mode control: The Delta sigma Modulation Approach. Springer International Publishing AG Switzerland 2015.
  • [36] Slotine, J-J E. Sliding controller design for non-linear systems. International Journal of Control 1948; 40(2):421-434. DOI: 10.1080/00207178408933284
There are 36 citations in total.

Details

Primary Language English
Subjects Electrical Engineering
Journal Section Research Articles
Authors

Zaidi Abdelaziz 0000-0002-5112-0059

Chrigui Mohamed This is me 0000-0003-4218-4349

Nadia Zanzourı 0000-0003-0695-8706

Early Pub Date July 29, 2023
Publication Date June 30, 2023
Acceptance Date June 14, 2023
Published in Issue Year 2023 Volume: 7 Issue: 2

Cite

Vancouver Abdelaziz Z, Mohamed C, Zanzourı N. Cascade sliding mode control implementation in photovoltaic power supply for camping-car applications. JES. 2023;7(2):222-43.

Journal of Energy Systems is the official journal of 

European Conference on Renewable Energy Systems (ECRES8756 and


Electrical and Computer Engineering Research Group (ECERG)  8753


Creative Commons License JES is licensed to the public under a Creative Commons Attribution 4.0 license.