Research Article
BibTex RIS Cite

Modelling and optimization of residual stress induction on laser-worked X12Cr turbine blades

Year 2023, Volume: 7 Issue: 3, 257 - 268, 30.09.2023
https://doi.org/10.30521/jes.1249912

Abstract

The energy and power industry conventionally depends on large-scale turbomachinery to meet the ever-growing global energy demands. However, unplanned in-service failures remain a threat to sustainability with safety and economic consequences. The laser shock surface treatment technique is being considered a competitive alternative in mitigating crack initiation and growth, wear and fatigue of industrial components such as turbine blades. This paper presents the modelling and optimization of laser shock treatment parameters using numerical methods and commercial codes such as ABAQUS® and MATLAB®. Model-based process optimization parameters for the induction of global optimum compressive residual stress distribution in laser-worked Chromium-12 based high strength steel alloy (X12Cr) turbine blade is established, showing parametric combinations of inputs variables within the domain under investigation, yielding maximized CRS outputs. A hierarchy of significance of the input parameters to the laser shock peening process for stress induction has also been put forward as an outcome of this study. The capacity to predict and analyze outcomes before actual treatment of the components is beneficial and imperative to cutting costs, downtimes and other economic losses associated with unplanned failure of these components.

Supporting Institution

South Africa National Research Foundation (NRF)

Project Number

NRF Grant Reference No: SFH170720255948

Thanks

The authors would like to recognize the contribution of the National Research Foundation (NRF Grant Reference No: SFH170720255948), the National Laser Centre, Centre for Scientific and Industrial Research, Pretoria, Tshwane University of Technology, Eskom Holdings (SOC) Ltd, and the Department of Science and Innovation (DSI), all in the Republic of South Africa, in terms of financial and technical support of towards the success of this study. The opinions presented and conclusions inferred thereof are those of the author(s) and are not to be attributed to the NRF, Eskom Holdings or the DSI.

References

  • [1] Peyre, P., Chaieb, I., Braham, C. FEM calculation of residual stresses induced by laser shock processing in stainless steels. Modelling and Simulation in Materials Science and Engineering 2007; 15(3): 205–221. doi 10.1088/0965-0393/15/3/002.
  • [2] Fameso, F.; Desai, D.; Kok, S.; Armfield, D.; Newby, M. Residual Stress Enhancement by Laser Shock Treatment in Chromium-Alloyed Steam Turbine Blades. Materials 2022; 15; 5682. https://doi.org/10.3390/ma15165682
  • [3] Braisted, W., Brockman, R. Finite element simulation of laser shock peening. International Journal of Fatigue 1999; 21: pp. 719–724.
  • [4] Achintha, M., Nowell, D. Eigenstrain modelling of residual stresses generated by arrays of LSP shots. Procedia Engineering 2011; 10: 1327–1332. https://doi.org/10.1016/j.proeng.2011.04.221
  • [5] Karbalaian, H. R., Yousefi-Koma, A., Karimpour, M., Mohtasebi, S. S. Investigation on the Effect of Overlapping Laser Pulses in Laser Shock Peening with Finite Element Method. Procedia Materials Science 2015; 11: 454–458. https://doi.org/10.1016/j.mspro.2015.11.045
  • [6] Amarchinta, H. K., Grandhi, R. v., Langer, K., Stargel, D. S. Material model validation for laser shock peening process simulation. Modelling and Simulation in Materials Science and Engineering 2009; 17(1): 0–15. https://doi.org/10.1088/0965-0393/17/1/015010
  • [7] Bhamare, S., Ramakrishnan, G., Mannava, S. R., Langer, K., Vasudevan, V. K., Qian, D. Surface & Coatings Technology Simulation-based optimization of laser shock peening process for improved bending fatigue life of Ti – 6Al – 2Sn – 4Zr – 2Mo alloy. Surface & Coatings Technology 2013; 232: 464–474. https://doi.org/10.1016/j.surfcoat.2013.06.003
  • [8] Jiang, Y. F., Ji, B., Gan, X. D., Hua, C., Li, X., & Zhu, H. Study on the effect of laser peening with different power densities on fatigue life of fastener hole. Journal of Optics and Laser Technology 2018; 106: 311–320. https://doi.org/10.1016/j.optlastec.2018.04.025
  • [9] Keller, S., Chupakhin, S., Staron, P., Maawad, E., Kashaev, N., Klusemann, B. Experimental and numerical investigation of residual stresses in laser shock peened AA2198. Journal of Materials Processing Technology 2018; 255: 294–307. https://doi.org/10.1016/j.jmatprotec.2017.11.023
  • [10] Zhao, J., Dong, Y., Ye, C. Laser shock peening induced residual stresses and the effect on crack propagation behaviour. International Journal of Fatigue 2017; 100: 407–417. https://doi.org/10.1016/j.ijfatigue.2017.04.002
  • [11] Fameso, F., Desai, D., Kok, S., Newby, M., Glaser, D. Simulation of laser shock peening on X12Cr steel using an alternate computational mechanical threshold stress plasticity model. The International Journal of Advanced Manufacturing Technology 2020; 111(1): 1– 11. https://doi.org/10.1007/s00170-020-06079-y.
  • [12] Kuveya, KR., Polese, C., Newby, M. Laser Peening versus Shot Peening Effects on Residual Stress and Surface Modification of X12CrNiMo12 Turbine Blade. In: 6th International Conference on Laser Peening and Related Phenomena; 6 – 11 November 2021: South Africa.
  • [13] Karbalaian, H. R., Yousefi-Koma, A., Karimpour, M., Mohtasebi, S. S. Investigation on the Effect of Overlapping Laser Pulses in Laser Shock Peening with Finite Element Method. Procedia Materials Science 2015; 11: 454–458. https://doi.org/10.1016/j.mspro.2015.11.045
  • [14] Fameso, F., Desai, D. Explicit analysis using time-dependent damping simulation of one-sided laser shock peening on martensitic steel turbine blades. Simulation 2020; 96(12): 927–938. https://doi.org/10.1177/0037549720954272
Year 2023, Volume: 7 Issue: 3, 257 - 268, 30.09.2023
https://doi.org/10.30521/jes.1249912

Abstract

Project Number

NRF Grant Reference No: SFH170720255948

References

  • [1] Peyre, P., Chaieb, I., Braham, C. FEM calculation of residual stresses induced by laser shock processing in stainless steels. Modelling and Simulation in Materials Science and Engineering 2007; 15(3): 205–221. doi 10.1088/0965-0393/15/3/002.
  • [2] Fameso, F.; Desai, D.; Kok, S.; Armfield, D.; Newby, M. Residual Stress Enhancement by Laser Shock Treatment in Chromium-Alloyed Steam Turbine Blades. Materials 2022; 15; 5682. https://doi.org/10.3390/ma15165682
  • [3] Braisted, W., Brockman, R. Finite element simulation of laser shock peening. International Journal of Fatigue 1999; 21: pp. 719–724.
  • [4] Achintha, M., Nowell, D. Eigenstrain modelling of residual stresses generated by arrays of LSP shots. Procedia Engineering 2011; 10: 1327–1332. https://doi.org/10.1016/j.proeng.2011.04.221
  • [5] Karbalaian, H. R., Yousefi-Koma, A., Karimpour, M., Mohtasebi, S. S. Investigation on the Effect of Overlapping Laser Pulses in Laser Shock Peening with Finite Element Method. Procedia Materials Science 2015; 11: 454–458. https://doi.org/10.1016/j.mspro.2015.11.045
  • [6] Amarchinta, H. K., Grandhi, R. v., Langer, K., Stargel, D. S. Material model validation for laser shock peening process simulation. Modelling and Simulation in Materials Science and Engineering 2009; 17(1): 0–15. https://doi.org/10.1088/0965-0393/17/1/015010
  • [7] Bhamare, S., Ramakrishnan, G., Mannava, S. R., Langer, K., Vasudevan, V. K., Qian, D. Surface & Coatings Technology Simulation-based optimization of laser shock peening process for improved bending fatigue life of Ti – 6Al – 2Sn – 4Zr – 2Mo alloy. Surface & Coatings Technology 2013; 232: 464–474. https://doi.org/10.1016/j.surfcoat.2013.06.003
  • [8] Jiang, Y. F., Ji, B., Gan, X. D., Hua, C., Li, X., & Zhu, H. Study on the effect of laser peening with different power densities on fatigue life of fastener hole. Journal of Optics and Laser Technology 2018; 106: 311–320. https://doi.org/10.1016/j.optlastec.2018.04.025
  • [9] Keller, S., Chupakhin, S., Staron, P., Maawad, E., Kashaev, N., Klusemann, B. Experimental and numerical investigation of residual stresses in laser shock peened AA2198. Journal of Materials Processing Technology 2018; 255: 294–307. https://doi.org/10.1016/j.jmatprotec.2017.11.023
  • [10] Zhao, J., Dong, Y., Ye, C. Laser shock peening induced residual stresses and the effect on crack propagation behaviour. International Journal of Fatigue 2017; 100: 407–417. https://doi.org/10.1016/j.ijfatigue.2017.04.002
  • [11] Fameso, F., Desai, D., Kok, S., Newby, M., Glaser, D. Simulation of laser shock peening on X12Cr steel using an alternate computational mechanical threshold stress plasticity model. The International Journal of Advanced Manufacturing Technology 2020; 111(1): 1– 11. https://doi.org/10.1007/s00170-020-06079-y.
  • [12] Kuveya, KR., Polese, C., Newby, M. Laser Peening versus Shot Peening Effects on Residual Stress and Surface Modification of X12CrNiMo12 Turbine Blade. In: 6th International Conference on Laser Peening and Related Phenomena; 6 – 11 November 2021: South Africa.
  • [13] Karbalaian, H. R., Yousefi-Koma, A., Karimpour, M., Mohtasebi, S. S. Investigation on the Effect of Overlapping Laser Pulses in Laser Shock Peening with Finite Element Method. Procedia Materials Science 2015; 11: 454–458. https://doi.org/10.1016/j.mspro.2015.11.045
  • [14] Fameso, F., Desai, D. Explicit analysis using time-dependent damping simulation of one-sided laser shock peening on martensitic steel turbine blades. Simulation 2020; 96(12): 927–938. https://doi.org/10.1177/0037549720954272
There are 14 citations in total.

Details

Primary Language English
Subjects Electrical Engineering, Mechanical Engineering
Journal Section Research Articles
Authors

Festus Oluwadare Fameso 0000-0003-4786-9566

Dawood Desai This is me 0000-0002-5608-4528

Schalk Kok This is me 0000-0001-9453-2806

Dylan Armfield This is me 0000-0002-5844-4574

Mark Newby This is me 0000-0003-4786-9566

Project Number NRF Grant Reference No: SFH170720255948
Early Pub Date September 25, 2023
Publication Date September 30, 2023
Acceptance Date July 18, 2023
Published in Issue Year 2023 Volume: 7 Issue: 3

Cite

Vancouver Fameso FO, Desai D, Kok S, Armfield D, Newby M. Modelling and optimization of residual stress induction on laser-worked X12Cr turbine blades. JES. 2023;7(3):257-68.

Journal of Energy Systems is the official journal of 

European Conference on Renewable Energy Systems (ECRES8756 and


Electrical and Computer Engineering Research Group (ECERG)  8753


Creative Commons License JES is licensed to the public under a Creative Commons Attribution 4.0 license.