Electromagnetic shielding tests of a permanent magnet generator
Year 2023,
Volume: 7 Issue: 3, 290 - 301, 30.09.2023
Mehmet Sarıkahya
,
Nihan Merve Sarıkahya
,
Erol Kurt
Abstract
In the present work, some tests on the electromagnetic interference issues of a new designed and constructed axial flux permanent magnet generator have been presented. The machine itself has multiple special laminated cores (i.e., 12) and 24 windings in the stator component with two active sides. Machine operates in 3 phases and uses disc type permanent magnets on two rotors at two sides in a sandwiched formation. Rotors have 32 magnets and freely rotates at the vicinity of stable stator within a certain air gap. The electromagnetic interference measurements have been realized for different distances and directions from the machine. Besides, the effects of different frequencies are also evaluated following the tests. It has been concluded that the shielding material shape is very important for the optimum shielding results.
Supporting Institution
Scientific and Technological Research Council of Turkey (TUBITAK)
Project Number
MAG-315M483
References
- [1] Gor, H, Kurt, E. Preliminary studies of a new permanent magnet generator (PMG) with the axial and radial flux morphology. International Journal of Hydrogen Energy 2016; 41: 7005-7018. DOI: 10.1016/j.ijhydene.2015.12.195
- [2] Bouloukza, I, Mordjaoui, M, Kurt, E, Bal, G, Ökmen, C. Electromagnetic design of new radial flux permanent magnet motor. Journal of Energy Systems 2018; 2(1): 13- 27. DOI: 10.30521/jes.397836
- [3] Kurt, E, Gör, H, Çelik, K. Optimization of a 3-kW axial flux permanent magnet generator with variable air gap. Int Trans Electr Energ Syst. 2021; 31(11): e13074. DOI: 10.1002/2050-7038.13074
- [4] Yıldırız, E, Aydemir, MT. Analysis, design and implementation of an axial flux, permanent magnet machine to be used in a low power wind generator. J Fac Eng Archit Gazi Univ 2009; 24(3): 525-31.
- [5] Celik, E, Gor, H, Ozturk, N, Kurt E. Application of artificial neural network to estimate power generation and efficiency of a new axial flux permanent magnet synchronous generator. international journal of hydrogen energy 2017; 42(28): 17692-17699. DOI: 10.1016/j.ijhydene.2017.01.168
- [6] Kurt, E, Gör, H, Demirtas¸ M. Theoretical and experimental analyses of a single-phase permanent magnet generator (PMG) with multiple cores having axial and radial directed fluxes. Energ Conver Manage. 2014; 77: 163-172. DOI: 10.1016/j.enconman.2013.09.013
- [7] Neruda, M, Vojtech, L. Electromagnetic shielding effectiveness of woven fabrics with high electrical conductivity: complete derivation and verification of analytical model. Materials 2018; 11(9): 1657. DOI: 10.3390/ma11091657
- [8] ASTM Standard D4935, In Standard Test Method for Measuring the Electromagnetic Shielding Effectiveness of Planar Materials; ASTM International: West Conshohocken, PA, USA, 2010.
- [9] Viskadourakis, Z, Vasilopoulos, KC, Economou, EN. Electromagnetic shielding effectiveness of 3D printed polymer composites. Applied Physics A 2017; 123: 736. DOI: 10.1007/s00339-017-1353-z
- [10] Çelik, K, Kurt, E. Design and implementation of a dual band bioinspired leaf rectenna for RF energy harvesting applications. Int. J. RF & Microwave Computer-Aided Engineering 2021; 31(11): e22868. DOI: 10.1002/mmce.22868.
- [11] Munalli, D, Dimitrakis, G, Chronopoulos, D. Electromagnetic shielding effectiveness of carbon fibre reinforced composites. Composites Part B 2019; 173: 106906. DOI: 10.1016/j.compositesb.2019.106906
- [12] Celozzi, S, Araneo, R. Electromagnetic Shielding. In Encyclopedia of RF and Microwave Engineering, Chang, K, Editor. DOI: 10.1002/0471654507.eme094
- [13] Kuester, S, Demarquette, NR. Hybrid nanocomposites of thermoplastic elastomer and carbon nanoadditives for electromagnetic shielding. European Polymer Journal 2017; 88: 328-339. DOI: 10.1016/j.eurpolymj.2017.01.023
- [14] Yao, Y, Zhao, J, Yang, X, Chai, C. Recent advance in electromagnetic shielding of Mxenes. Chinese Chemical Letters 2021: 32(2); 620-634. DOI: 10.1016/j.cclet.2020.07.029
- [15] Pan, T, Zhang, Y, Wang, C, Gao, H, Wen, B, Yao, B. Mulberry-like polyaniline-based flexible composite fabrics with effective electromagnetic shielding capability. Composites Science and Technology 2020; 188: 107991. DOI: 10.1016/j.compscitech.2020.107991
- [16] Khodiri, AA, Al-Ashry, MY, El-Shamy, AG. Novel hybrid nanocomposites based on polyvinyl alcohol/graphene/magnetite nanoparticles for high electromagnetic shielding performance. Journal of Alloys and Compounds 2020; 847: 156430. DOI: 10.1016/j.jallcom.2020.156430
- [17] Zhan, Y, Long, Z, Wan, X. 3D carbon fiber mats/nano-Fe3O4 hybrid material with high electromagnetic shielding performance. Applied Surface Science 2018; 444: 710-720. DOI: 10.1016/j.apsusc.2018.03.006
- [18] Zhu, H, Yang, Y., Sheng, A. Layered structural design of flexible waterborne polyurethane conductive film for excellent electromagnetic interference shielding and low microwave reflectivity. Applied Surface Science 2019; 469: 1-9. DOI: 10.1016/j.apsusc.2018.11.007
- [19] Liu, L, Chen, X, Jingfeng W. Effects of Y and Zn additions on electrical conductivity and electromagnetic shielding effectiveness of Mg-Y-Zn alloys. Journal of Materials Science and Technology 2019; 35(6): 1074-1080. DOI:10.1016/j.jmst.2018.12.010
- [20] Wanasinghe, D., Aslani, F, Ma, G. Electromagnetic shielding properties of carbon fibre reinforced cementitious composites. Construction and Building Materials 2020; 260: 120439. DOI: 10.1016/j.conbuildmat.2020.120439
- [21] Wang, Y, Wanga, W, Dinga, X. Multilayer-structured Ni-Co-Fe-P/polyaniline/polyimide composite fabric for robust electromagnetic shielding with low reflection characteristic. Chemical Engineering Journal 2020; 380: 122553. DOI: 10.1016/j.cej.2019.122553
- [22] Wypych, G. Handbook of Fillers: Pigment & Resin Technology, Vol. 28 No. 2, 1999.
- [23] Afilipoaei, C, Teodorescu-Draghicescu, H. A review over electromagnetic shielding effectiveness of composite materials. Proceedings 2020; 63: 23. DOI: 10.3390/proceedings2020063023
- [24] SMP2, Technical manuel, (2022).
- [25] Safarova, V, Militky, J. Multifunctional metal composite textile shields against electromagnetic radiation effect of various parameters on electromagnetic shielding effectiveness. Polymer Composites 2017; 38(2): 309–323. DOI: 10.1002/pc.23588
- [26] Mathur, P, Raman, S. Electromagnetic interference (EMI): measurement and reduction techniques. Journal of Electronic Materials 2020; 49: 2975–2998. DOI:10.1007/s11664-020-07979-1
Year 2023,
Volume: 7 Issue: 3, 290 - 301, 30.09.2023
Mehmet Sarıkahya
,
Nihan Merve Sarıkahya
,
Erol Kurt
Project Number
MAG-315M483
References
- [1] Gor, H, Kurt, E. Preliminary studies of a new permanent magnet generator (PMG) with the axial and radial flux morphology. International Journal of Hydrogen Energy 2016; 41: 7005-7018. DOI: 10.1016/j.ijhydene.2015.12.195
- [2] Bouloukza, I, Mordjaoui, M, Kurt, E, Bal, G, Ökmen, C. Electromagnetic design of new radial flux permanent magnet motor. Journal of Energy Systems 2018; 2(1): 13- 27. DOI: 10.30521/jes.397836
- [3] Kurt, E, Gör, H, Çelik, K. Optimization of a 3-kW axial flux permanent magnet generator with variable air gap. Int Trans Electr Energ Syst. 2021; 31(11): e13074. DOI: 10.1002/2050-7038.13074
- [4] Yıldırız, E, Aydemir, MT. Analysis, design and implementation of an axial flux, permanent magnet machine to be used in a low power wind generator. J Fac Eng Archit Gazi Univ 2009; 24(3): 525-31.
- [5] Celik, E, Gor, H, Ozturk, N, Kurt E. Application of artificial neural network to estimate power generation and efficiency of a new axial flux permanent magnet synchronous generator. international journal of hydrogen energy 2017; 42(28): 17692-17699. DOI: 10.1016/j.ijhydene.2017.01.168
- [6] Kurt, E, Gör, H, Demirtas¸ M. Theoretical and experimental analyses of a single-phase permanent magnet generator (PMG) with multiple cores having axial and radial directed fluxes. Energ Conver Manage. 2014; 77: 163-172. DOI: 10.1016/j.enconman.2013.09.013
- [7] Neruda, M, Vojtech, L. Electromagnetic shielding effectiveness of woven fabrics with high electrical conductivity: complete derivation and verification of analytical model. Materials 2018; 11(9): 1657. DOI: 10.3390/ma11091657
- [8] ASTM Standard D4935, In Standard Test Method for Measuring the Electromagnetic Shielding Effectiveness of Planar Materials; ASTM International: West Conshohocken, PA, USA, 2010.
- [9] Viskadourakis, Z, Vasilopoulos, KC, Economou, EN. Electromagnetic shielding effectiveness of 3D printed polymer composites. Applied Physics A 2017; 123: 736. DOI: 10.1007/s00339-017-1353-z
- [10] Çelik, K, Kurt, E. Design and implementation of a dual band bioinspired leaf rectenna for RF energy harvesting applications. Int. J. RF & Microwave Computer-Aided Engineering 2021; 31(11): e22868. DOI: 10.1002/mmce.22868.
- [11] Munalli, D, Dimitrakis, G, Chronopoulos, D. Electromagnetic shielding effectiveness of carbon fibre reinforced composites. Composites Part B 2019; 173: 106906. DOI: 10.1016/j.compositesb.2019.106906
- [12] Celozzi, S, Araneo, R. Electromagnetic Shielding. In Encyclopedia of RF and Microwave Engineering, Chang, K, Editor. DOI: 10.1002/0471654507.eme094
- [13] Kuester, S, Demarquette, NR. Hybrid nanocomposites of thermoplastic elastomer and carbon nanoadditives for electromagnetic shielding. European Polymer Journal 2017; 88: 328-339. DOI: 10.1016/j.eurpolymj.2017.01.023
- [14] Yao, Y, Zhao, J, Yang, X, Chai, C. Recent advance in electromagnetic shielding of Mxenes. Chinese Chemical Letters 2021: 32(2); 620-634. DOI: 10.1016/j.cclet.2020.07.029
- [15] Pan, T, Zhang, Y, Wang, C, Gao, H, Wen, B, Yao, B. Mulberry-like polyaniline-based flexible composite fabrics with effective electromagnetic shielding capability. Composites Science and Technology 2020; 188: 107991. DOI: 10.1016/j.compscitech.2020.107991
- [16] Khodiri, AA, Al-Ashry, MY, El-Shamy, AG. Novel hybrid nanocomposites based on polyvinyl alcohol/graphene/magnetite nanoparticles for high electromagnetic shielding performance. Journal of Alloys and Compounds 2020; 847: 156430. DOI: 10.1016/j.jallcom.2020.156430
- [17] Zhan, Y, Long, Z, Wan, X. 3D carbon fiber mats/nano-Fe3O4 hybrid material with high electromagnetic shielding performance. Applied Surface Science 2018; 444: 710-720. DOI: 10.1016/j.apsusc.2018.03.006
- [18] Zhu, H, Yang, Y., Sheng, A. Layered structural design of flexible waterborne polyurethane conductive film for excellent electromagnetic interference shielding and low microwave reflectivity. Applied Surface Science 2019; 469: 1-9. DOI: 10.1016/j.apsusc.2018.11.007
- [19] Liu, L, Chen, X, Jingfeng W. Effects of Y and Zn additions on electrical conductivity and electromagnetic shielding effectiveness of Mg-Y-Zn alloys. Journal of Materials Science and Technology 2019; 35(6): 1074-1080. DOI:10.1016/j.jmst.2018.12.010
- [20] Wanasinghe, D., Aslani, F, Ma, G. Electromagnetic shielding properties of carbon fibre reinforced cementitious composites. Construction and Building Materials 2020; 260: 120439. DOI: 10.1016/j.conbuildmat.2020.120439
- [21] Wang, Y, Wanga, W, Dinga, X. Multilayer-structured Ni-Co-Fe-P/polyaniline/polyimide composite fabric for robust electromagnetic shielding with low reflection characteristic. Chemical Engineering Journal 2020; 380: 122553. DOI: 10.1016/j.cej.2019.122553
- [22] Wypych, G. Handbook of Fillers: Pigment & Resin Technology, Vol. 28 No. 2, 1999.
- [23] Afilipoaei, C, Teodorescu-Draghicescu, H. A review over electromagnetic shielding effectiveness of composite materials. Proceedings 2020; 63: 23. DOI: 10.3390/proceedings2020063023
- [24] SMP2, Technical manuel, (2022).
- [25] Safarova, V, Militky, J. Multifunctional metal composite textile shields against electromagnetic radiation effect of various parameters on electromagnetic shielding effectiveness. Polymer Composites 2017; 38(2): 309–323. DOI: 10.1002/pc.23588
- [26] Mathur, P, Raman, S. Electromagnetic interference (EMI): measurement and reduction techniques. Journal of Electronic Materials 2020; 49: 2975–2998. DOI:10.1007/s11664-020-07979-1