Research Article
BibTex RIS Cite

Flow characteristics of two-dimensional impinging synthetic jets

Year 2023, Volume: 7 Issue: 4, 327 - 338, 31.12.2023
https://doi.org/10.30521/jes.1316559

Abstract

We aimed to elucidate the behavior of impinging synthetic jets against the surface of a wall placed near the slot exit. Synthetic jets with various frequencies were used, and a rectangular body of finite length (target plate) was placed downstream of these jets. The flows were visualized by the smoke-wire method and numerical simulation, and the velocity distributions around the target plate were measured using a hot-wire anemometer. The flow fields of steady continuous jets and synthetic jets with unsteady characteristics were compared, and their flow characteristics were explored. We experimentally found that the flow field depends on the dimensionless target plate length and dimensionless frequency of the synthetic jet for a fixed distance from the slot to the target plate. Furthermore, at low frequencies, the behavior after impinging the target plate was similar to that observed for a continuous jet. Additionally, it has been confirmed that these results qualitatively agree with the numerical simulation results.

References

  • [1] Forthman, E. Turbulent jet expansion. Ingenieur-Archiv 1934; V: 1-19.
  • [2] Rajaratnam, N. Turbulent Jets. Amsterdam, THE NETHERLANDS: Elsevier Scientific Publishing Company, 1976.
  • [3] Shakouchi, T. Jet Flow Engineering. Tokyo, JAPAN: Morikita Publishing, 2004.
  • [4] Glezer, A., Amitay, M. Synthetic jets. Annual Review of Fluid Mechanics 2002; 34(1): 503-529. DOI: 10.1146/annurev.fluid.34.090501.094913.
  • [5] Holman, R, Utturkar, Y, Mittal, R, Smith, BL, Cattafesta, L. Formation criterion for synthetic jets. AIAA Journal 2005; 43(10): 2110-2116. DOI: 10.2514/1.12033.
  • [6] Smith, BL, Swift, GW. A comparison between synthetic jets and continuous jets. Experiments in Fluids 2003; 34(4): 467-472. DOI: 10.1007/s00348-002-0577-6.
  • [7] Tang, H, Zhong, S. 2D numerical study of circular synthetic jets in quiescent flows. Aeronautical Journal 2005; 109(1092): 89-97. DOI: 10.1017/S0001924000000592.
  • [8] Nishibe, K, Fujita, Y, Sato, K, Yokota, K, Koso, T. Experimental and numerical study on the flow characteristics of synthetic jets. Journal of Fluid Science and Technology 2011; 6(4): 425-436. DOI: 10.1299/jfst.6.425.
  • [9] Koso, T, Morita, M. Effects of stroke and Reynolds number on characteristics of circular synthetic jets. Journal of Fluid Science and Technology 2014; 9(2): JFST0021. DOI: 10.1299/jfst.2014jfst0021.
  • [10] Koso, T, Matsuda, S, Masuda, H, Akahoshi, T. Effect of stroke on structure of vortex ring array in circular synthetic jets. Journal of Fluid Science and Technology 2014; 9(3): JFST0034. DOI: 10.1299/jfst.2014jfst0034.
  • [11] Nishibe, K, Fujiwara, T, Ohue, H, Takezawa, H, Sato, K, Yokota, K. Synthetic jet actuator using bubbles produced by electric discharge. Journal of Fluid Science and Technology 2014; 9(3): JFST0033. DOI: 10.1299/jfst.2014jfst0033.
  • [12] Smith, BL, Glezer, A. Jet vectoring using synthetic jets. Journal of Fluid Mechanics 2002; 458: 1-34. DOI: 10.1017/S0022112001007406.
  • [13] Watabe, Y, Sato, K, Nishibe, K, Yokota, K. The influence of an asymmetric slot on the flow characteristics of synthetic jets. In: Proceedings of the 5th International Conference on Jets, Wakes and Separated Flows (ICJWSF2015); 2016: Springer International Publishing, pp. 101-107.
  • [14] Kobayashi, R, Nishibe, K, Watabe, Y, Sato, K, Yokota, K. Vector control of synthetic jets using an asymmetric slot. Journal of Fluids Engineering 2018; 140(5): 051102. DOI: 10.1115/1.4038660.
  • [15] Kobayashi, R, Terakado, H, Sato, K, Taniguchi, J, Nishibe, K, Yokota, K. Behavior of plane synthetic jets generated by an asymmetric stepped slot. International Journal of Fluid Machinery and Systems 2020; 13(1): 253-265. DOI: 10.5293/IJFMS.2020.13.1.253.
  • [16] Kobayashi, R, Watabe, Y, Tamanoi, Y, Nishibe, K, Kang, D, Sato, K. Jet vectoring using secondary Coanda synthetic jets. Mechanical Engineering Journal 2020; 7(5): 20-00215. DOI: 10.1299/mej.20-00215.
  • [17] Zhang, Q, Tamanoi, Y, Kang, D, Nishibe, K, Yokota, K, Sato, K. Influence of amplitude of excited secondary flow on the direction of jets. Transactions of the Japan Society for Aeronautical and Space Sciences 2023; 66(2): 37-45. DOI: 10.2322/tjsass.66.37.
  • [18] Amitay, M, Smith, DR, Kibens, V, Parekh, DE, Glezer, A. Aerodynamic flow control over an unconventional airfoil using synthetic jet actuators. AIAA Journal 2001; 39(3): 361-370. DOI: 10.2514/2.1323.
  • [19] Haider, BA, Durrani, N, Aizud, N, Zahir, S. Aerodynamic stall control of a generic airfoil using synthetic jet actuator. International Journal of Aerospace and Mechanical Engineering 2010; 4(9): 788-793. DOI: 10.5281/zenodo.1083649.
  • [20] Yen, J, Ahmed, NA. Parametric study of dynamic stall flow field with synthetic jet actuation. Journal of Fluids Engineeering 2012; 134(7): 071106. DOI: 10.1115/1.4006957.
  • [21] Duvigneau, R, Hay, A, Visonneau, M. Optimal location of a synthetic jet on an airfoil for stall control. Journal of Fluids Engineering 2007; 129(7): 825-833. DOI: 10.1115/1.2742729.
  • [22] Ishizawa, T, Sato, K, Nishibe, K, Yokota, K. Performance characteristics of a fan using synthetic jets. In: Proceedings of the 5th International Conference on Jets, Wakes and Separated Flows (ICJWSF2015); 2016: Springer International Publishing, pp. 109-115.
  • [23] Nishibe, K, Nomura, Y, Noda, K, Ohue, H, Sato, K. Influence of stroke on performance characteristics of synthetic jet fan. Journal of Applied Fluid Mechanics 2018; 11(4): 945-956. DOI: 10.29252/jafm.11.04.28493.
  • [24] Kanamori, A, Hiwada, M, Senaha, I, Oyakawa, K. Effect of orifice configuration on flow behavior and impingement heat transfer. The Japan Society of Mechanical Engineers Essay Collection (Part B) 2011; 77(775): 456-464 (in Japanese). DOI: 10.1299/kikaib.77.456.
  • [25] Malingham, R, Glezer, A. Design and thermal characteristics of a synthetic jet ejector heat sink. Journal of Electronic Packaging 2005; 127: 172-177. DOI: 10.1115/1.1869509.
  • [26] Pavlova, A, Amitay, M. Electronic cooling with synthetic jet impingement. ASME Journal of Heat and Mass Transfer 2006; 128(9): 897-907. DOI: 10.1115/1.2241889.
  • [27] Chaudhari, M, Puranik, B, Agrawal, A. Effect of orifice shape in synthetic jet-based impingement cooling. Experimental Thermal and Fluid Science 2010; 34(2): 246-256. DOI: 10.1016/j.expthermflusci.2009.11.001.
  • [28] Wang, L, Feng, LH, Xu, Y, Xu, Y, Wang, JJ. Experimental investigation on flow characteristics and unsteady heat transfer of noncircular impinging synthetic jets. International Journal of Heat and Mass Transfer, 2022; 190: 122760. DOI: 10.1016/j.ijheatmasstransfer.2022.122760.
  • [29] Xu, Y, Moon, C, Wang, JJ, Penyazkov, OG, Kim, KC. An experimental study on the flow and heat transfer of an impinging synthetic jet. International Journal of Heat and Mass Transfer 2019; 144: 118626. DOI: 10.1016/j.ijheatmasstransfer.2019.118626.
  • [30] Silva-Llanca, L, Ortega, A, Rose, I. Experimental convective heat transfer in a geometrically large two-dimensional impinging synthetic jet. International Journal of Thermal Sciences 2015; 90: 339-350. DOI: 10.1016/j.ijthermalsci.2014.11.011.
  • [31] Trávníček, Z, Vít, T. Impingement heat/mass transfer to hybrid synthetic jets and other reversible pulsating jets. International Journal of Heat and Mass Transfer 2015; 85: 473-487. DOI: 10.1016/j.ijheatmasstransfer.2015.01.125.
  • [32] Pablo, M, F, Koldo, P, P, Unai, F, G, Ekaitz, Z, Josu, S. Experimental and numerical modeling of an air jet impingement system. European Journal of Mechanics / B Fluids 2022; 94: 228-245. DOI: 10.1016/j.euromechflu.2022.03.005.
  • [33] Hui, T, Shan, Z. 2D numerical study of circular synthetic jets in quiescent flows. The Aeronautical Journal 2005; 2938: 89-97. DOI: 10.1017/S0001924000000592.
Year 2023, Volume: 7 Issue: 4, 327 - 338, 31.12.2023
https://doi.org/10.30521/jes.1316559

Abstract

References

  • [1] Forthman, E. Turbulent jet expansion. Ingenieur-Archiv 1934; V: 1-19.
  • [2] Rajaratnam, N. Turbulent Jets. Amsterdam, THE NETHERLANDS: Elsevier Scientific Publishing Company, 1976.
  • [3] Shakouchi, T. Jet Flow Engineering. Tokyo, JAPAN: Morikita Publishing, 2004.
  • [4] Glezer, A., Amitay, M. Synthetic jets. Annual Review of Fluid Mechanics 2002; 34(1): 503-529. DOI: 10.1146/annurev.fluid.34.090501.094913.
  • [5] Holman, R, Utturkar, Y, Mittal, R, Smith, BL, Cattafesta, L. Formation criterion for synthetic jets. AIAA Journal 2005; 43(10): 2110-2116. DOI: 10.2514/1.12033.
  • [6] Smith, BL, Swift, GW. A comparison between synthetic jets and continuous jets. Experiments in Fluids 2003; 34(4): 467-472. DOI: 10.1007/s00348-002-0577-6.
  • [7] Tang, H, Zhong, S. 2D numerical study of circular synthetic jets in quiescent flows. Aeronautical Journal 2005; 109(1092): 89-97. DOI: 10.1017/S0001924000000592.
  • [8] Nishibe, K, Fujita, Y, Sato, K, Yokota, K, Koso, T. Experimental and numerical study on the flow characteristics of synthetic jets. Journal of Fluid Science and Technology 2011; 6(4): 425-436. DOI: 10.1299/jfst.6.425.
  • [9] Koso, T, Morita, M. Effects of stroke and Reynolds number on characteristics of circular synthetic jets. Journal of Fluid Science and Technology 2014; 9(2): JFST0021. DOI: 10.1299/jfst.2014jfst0021.
  • [10] Koso, T, Matsuda, S, Masuda, H, Akahoshi, T. Effect of stroke on structure of vortex ring array in circular synthetic jets. Journal of Fluid Science and Technology 2014; 9(3): JFST0034. DOI: 10.1299/jfst.2014jfst0034.
  • [11] Nishibe, K, Fujiwara, T, Ohue, H, Takezawa, H, Sato, K, Yokota, K. Synthetic jet actuator using bubbles produced by electric discharge. Journal of Fluid Science and Technology 2014; 9(3): JFST0033. DOI: 10.1299/jfst.2014jfst0033.
  • [12] Smith, BL, Glezer, A. Jet vectoring using synthetic jets. Journal of Fluid Mechanics 2002; 458: 1-34. DOI: 10.1017/S0022112001007406.
  • [13] Watabe, Y, Sato, K, Nishibe, K, Yokota, K. The influence of an asymmetric slot on the flow characteristics of synthetic jets. In: Proceedings of the 5th International Conference on Jets, Wakes and Separated Flows (ICJWSF2015); 2016: Springer International Publishing, pp. 101-107.
  • [14] Kobayashi, R, Nishibe, K, Watabe, Y, Sato, K, Yokota, K. Vector control of synthetic jets using an asymmetric slot. Journal of Fluids Engineering 2018; 140(5): 051102. DOI: 10.1115/1.4038660.
  • [15] Kobayashi, R, Terakado, H, Sato, K, Taniguchi, J, Nishibe, K, Yokota, K. Behavior of plane synthetic jets generated by an asymmetric stepped slot. International Journal of Fluid Machinery and Systems 2020; 13(1): 253-265. DOI: 10.5293/IJFMS.2020.13.1.253.
  • [16] Kobayashi, R, Watabe, Y, Tamanoi, Y, Nishibe, K, Kang, D, Sato, K. Jet vectoring using secondary Coanda synthetic jets. Mechanical Engineering Journal 2020; 7(5): 20-00215. DOI: 10.1299/mej.20-00215.
  • [17] Zhang, Q, Tamanoi, Y, Kang, D, Nishibe, K, Yokota, K, Sato, K. Influence of amplitude of excited secondary flow on the direction of jets. Transactions of the Japan Society for Aeronautical and Space Sciences 2023; 66(2): 37-45. DOI: 10.2322/tjsass.66.37.
  • [18] Amitay, M, Smith, DR, Kibens, V, Parekh, DE, Glezer, A. Aerodynamic flow control over an unconventional airfoil using synthetic jet actuators. AIAA Journal 2001; 39(3): 361-370. DOI: 10.2514/2.1323.
  • [19] Haider, BA, Durrani, N, Aizud, N, Zahir, S. Aerodynamic stall control of a generic airfoil using synthetic jet actuator. International Journal of Aerospace and Mechanical Engineering 2010; 4(9): 788-793. DOI: 10.5281/zenodo.1083649.
  • [20] Yen, J, Ahmed, NA. Parametric study of dynamic stall flow field with synthetic jet actuation. Journal of Fluids Engineeering 2012; 134(7): 071106. DOI: 10.1115/1.4006957.
  • [21] Duvigneau, R, Hay, A, Visonneau, M. Optimal location of a synthetic jet on an airfoil for stall control. Journal of Fluids Engineering 2007; 129(7): 825-833. DOI: 10.1115/1.2742729.
  • [22] Ishizawa, T, Sato, K, Nishibe, K, Yokota, K. Performance characteristics of a fan using synthetic jets. In: Proceedings of the 5th International Conference on Jets, Wakes and Separated Flows (ICJWSF2015); 2016: Springer International Publishing, pp. 109-115.
  • [23] Nishibe, K, Nomura, Y, Noda, K, Ohue, H, Sato, K. Influence of stroke on performance characteristics of synthetic jet fan. Journal of Applied Fluid Mechanics 2018; 11(4): 945-956. DOI: 10.29252/jafm.11.04.28493.
  • [24] Kanamori, A, Hiwada, M, Senaha, I, Oyakawa, K. Effect of orifice configuration on flow behavior and impingement heat transfer. The Japan Society of Mechanical Engineers Essay Collection (Part B) 2011; 77(775): 456-464 (in Japanese). DOI: 10.1299/kikaib.77.456.
  • [25] Malingham, R, Glezer, A. Design and thermal characteristics of a synthetic jet ejector heat sink. Journal of Electronic Packaging 2005; 127: 172-177. DOI: 10.1115/1.1869509.
  • [26] Pavlova, A, Amitay, M. Electronic cooling with synthetic jet impingement. ASME Journal of Heat and Mass Transfer 2006; 128(9): 897-907. DOI: 10.1115/1.2241889.
  • [27] Chaudhari, M, Puranik, B, Agrawal, A. Effect of orifice shape in synthetic jet-based impingement cooling. Experimental Thermal and Fluid Science 2010; 34(2): 246-256. DOI: 10.1016/j.expthermflusci.2009.11.001.
  • [28] Wang, L, Feng, LH, Xu, Y, Xu, Y, Wang, JJ. Experimental investigation on flow characteristics and unsteady heat transfer of noncircular impinging synthetic jets. International Journal of Heat and Mass Transfer, 2022; 190: 122760. DOI: 10.1016/j.ijheatmasstransfer.2022.122760.
  • [29] Xu, Y, Moon, C, Wang, JJ, Penyazkov, OG, Kim, KC. An experimental study on the flow and heat transfer of an impinging synthetic jet. International Journal of Heat and Mass Transfer 2019; 144: 118626. DOI: 10.1016/j.ijheatmasstransfer.2019.118626.
  • [30] Silva-Llanca, L, Ortega, A, Rose, I. Experimental convective heat transfer in a geometrically large two-dimensional impinging synthetic jet. International Journal of Thermal Sciences 2015; 90: 339-350. DOI: 10.1016/j.ijthermalsci.2014.11.011.
  • [31] Trávníček, Z, Vít, T. Impingement heat/mass transfer to hybrid synthetic jets and other reversible pulsating jets. International Journal of Heat and Mass Transfer 2015; 85: 473-487. DOI: 10.1016/j.ijheatmasstransfer.2015.01.125.
  • [32] Pablo, M, F, Koldo, P, P, Unai, F, G, Ekaitz, Z, Josu, S. Experimental and numerical modeling of an air jet impingement system. European Journal of Mechanics / B Fluids 2022; 94: 228-245. DOI: 10.1016/j.euromechflu.2022.03.005.
  • [33] Hui, T, Shan, Z. 2D numerical study of circular synthetic jets in quiescent flows. The Aeronautical Journal 2005; 2938: 89-97. DOI: 10.1017/S0001924000000592.
There are 33 citations in total.

Details

Primary Language English
Subjects Mechanical Engineering (Other)
Journal Section Research Articles
Authors

Michiya Yasumiba 0009-0003-9729-9597

Koichi Nishibe This is me 0000-0001-8152-8146

Donghyuk Kang This is me 0009-0000-7995-0145

Kotaro Sato This is me 0000-0001-8276-8977

Early Pub Date December 14, 2023
Publication Date December 31, 2023
Acceptance Date October 20, 2023
Published in Issue Year 2023 Volume: 7 Issue: 4

Cite

Vancouver Yasumiba M, Nishibe K, Kang D, Sato K. Flow characteristics of two-dimensional impinging synthetic jets. JES. 2023;7(4):327-38.

Journal of Energy Systems is the official journal of 

European Conference on Renewable Energy Systems (ECRES8756 and


Electrical and Computer Engineering Research Group (ECERG)  8753


Creative Commons License JES is licensed to the public under a Creative Commons Attribution 4.0 license.