Research Article
BibTex RIS Cite

Research of hydrodynamic processes in the flow part of a low-flow thermopressor

Year 2024, Volume: 8 Issue: 2, 89 - 100, 30.06.2024
https://doi.org/10.30521/jes.1283526

Abstract

This research explores the hydrodynamic processes within the flow section of a low-flow thermopressor as a jet-type heat exchanger that utilizes the instantaneous evaporation of highly dispersed liquid in accelerated superheated gas flow resulting in reducing gas temperature with minimum resistance losses in contrast to conventional surface heat exchanger. The efficiency of thermopressor, as a contact heat exchanger, is highly dependent on the design of the flow section and the water injection nozzle. Geometric characteristics perform a crucial role in shaping gas-dynamic processes along the length of the thermopressor's flow section, influenced by resistance losses and local resistance in the tapering and expanding channel segments. Therefore, the optimum thermopressor design has to ensure minimize pressure losses. Using Computational Fluid Dynamics (CFD), the prototype thermopressor models were simulated and the results were compared with experimental data. The empirical equations for local resistance coefficients of thermopressor diffuser and confuser were received to evaluate the impact of various design parameters. The obtained local resistance coefficients for the confuser ranged from 0.02 to 0.08 and for the diffuser – from 0.08 to 0.32. The practical recommendations on geometric and operating parameters and characteristics for enhancing the efficiency of hydrodynamic processes in thermopressor flow part were given.

References

  • [1] Yang, Z, Kornienko, V, Radchenko, M, Radchenko, A, Radchenko, R. Research of exhaust gas boiler heat exchange surfaces with reduced corrosion when water-fuel emulsion combustion. Sustainability 2022; 14: 11927, DOI: 10.3390/su141911927.
  • [2] Kornienko, V, Radchenko, R, Bohdal, T, Radchenko, M, Andreev, A. Thermal Characteristics of the Wet Pollution Layer on Condensing Heating Surfaces of Exhaust Gas Boilers. In: Ivanov V, Pavlenko I, Liaposhchenko O, Machado J, Edl M, editors. Lecture Notes in Mechanical Engineering, Advances in Design, Simulation and Manufacturing IV, Proceedings of the 4th International Conference on Design, Simulation, Manufacturing: The Innovation Exchange, DSMIE-2021, Lviv, Ukraine, 8–11 June 2021; Springer: Cham, Switzerland, 2021; 2, pp. 339–348. DOI:10.1007/978-3-030-77823-1_34
  • [3] Yang, Z, Kornienko, V, Radchenko, M, Radchenko, A, Radchenko, R, Pavlenko, A. Capture of pollutants from exhaust gases by low-temperature heating surfaces. Energies 2022; 15(1): 120. DOI:10.3390/EN15010120.
  • [4] Kornienko, V, Radchenko, R, Radchenko, M, Radchenko, A, Pavlenko, A, Konovalov, D. Cooling cyclic air of marine engine with water-fuel emulsion combustion by exhaust heat recovery chiller. Energies 2022; 15: 248, DOI:10.3390/en15010248.
  • [5] Kurt, E, Demirci, M, Şahin, HM. Numerical analyses of the concentrated solar receiver pipes with superheated steam. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy. 2022;236(5):893-910. doi:10.1177/09576509221074524.
  • [6] Radchenko, R, Tsoy, A, Forduy S, Anatoliy Z, Kalinichenko I. Utilizing the heat of gas module by an absorption lithium-bromide chiller with an ejector booster stage. In: AIP Conference Proceedings 2020, Coimbatore, India, 17–18 July 2020; AIP Publishing LLC: Melville, NY, USA, 2020; Volume 2285: 030084. DOI:10.1063/5.0026788.
  • [7] Radchenko, N, Trushliakov, E, Tsoy, A, Shchesiuk, O. Methods to determine a design cooling capacity of ambient air conditioning systems in climatic conditions of Ukraine and Kazakhstan. In: AIP Conference Proceedings 2020, Coimbatore, India, 17–18 July 2020; AIP Publishing LLC: Melville, NY, USA, 2020; Volume 2285: 030074, DOI:10.1063/5.0026790.
  • [8] Trushliakov, E, Radchenko, M, Radchenko, A, Kantor, S, Zongming, Y. Statistical approach to improve the efficiency of air conditioning system performance in changeable climatic conditions. In ICSAI 2018 5th International Conference on Systems and Informatics; 10-12 November 2018: Jiangsu, Nanjing, China, pp. 256–260. DOI:10.1109/ICSAI.2018.8599434.
  • [9] Radchenko A, Tsoy A, Portnoi B, Kantor S. Increasing the efficiency of gas turbine inlet air cooling in actual climatic conditions of Kazakhstan and Ukraine. In: AIP Conference Proceedings 2020, Coimbatore, India, 17–18 July 2020; AIP Publishing LLC: Melville, NY, USA, 2020; Volume 2285: 030071, DOI:10.1063/5.0026787.
  • [10] Radchenko, M, Mikielewicz, D, Andreev, A, Vanyeyev, S, Savenkov, O. Efficient Ship Engine Cyclic Air Cooling by Turboexpander Chiller for Tropical Climatic Conditions. In: Nechyporuk M, Pavlikov V, Kritskiy D, editors. Lecture Notes in Networks and Systems, Proceedings of the Conference on Integrated Computer Technologies in Mechanical Engineering–Synergetic Engineering, ICTM 2020, Kharkiv, Ukraine, 28–29 October 2021; Cham, Switzerland: Springer, 2021; 188: pp. 498–507.
  • [11] Yang, Z, Konovalov, D, Radchenko, M, Radchenko, R, Kobalava, H, Radchenko, A, Kornienko, V. Analysis of efficiency of thermopressor application for internal combustion engine. Energies 2022; 15: 2250, DOI:10.3390/en15062250.
  • [12] Yang, Z, Radchenko, R, Radchenko, M, Radchenko, A, Kornienko, V. Cooling potential of ship engine intake air cooling and its realization on the route line. Sustainability 2022; 14: 15058, DOI:10.3390/su142215058.
  • [13] Radchenko, M, Radchenko, A, Trushliakov, E, Pavlenko, AM, Radchenko, R. Advanced method of variable refrigerant flow (VRF) systems designing to forecast on site operation–Part 1: General approaches and criteria. Energies 2023; 16: 1381, DOI:10.3390/en16031381
  • [14] Radchenko, M, Radchenko, A, Trushliakov, E, Koshlak, H, Radchenko, R. Advanced method of variable refrigerant flow (VRF) systems designing to forecast on site operation– Part 2: Phenomenological simulation to recuperate refrigeration energy. Energies 2023; 16: 1922, DOI:10.3390/en16041922
  • [15] Radchenko, M, Radchenko, A, Trushliakov, E, Pavlenko, A, Radchenko, R. Advanced method of variable refrigerant flow (VRF) system design to forecast on site operation–Part 3: Optimal solutions to minimize sizes. Energies 2023; 16: 2417. https://doi.org/10.3390/en16052417
  • [16] Radchenko, N, Tsoy, A, Mikielewicz, D, Kantor, S, Tkachenko, V. Improving the efficiency of railway conditioners in actual climatic conditions of operation. In: AIP Conference Proceedings 2020, Coimbatore, India, 17–18 July 2020; AIP Publishing LLC: Melville, NY, USA, 2020; Volume 2285: 030072, DOI:10.1063/5.0026789.
  • [17] Radchenko, A, Radchenko, M, Trushliakov, E, Kantor, S, Tkachenko, V. Statistical method to define rational heat loads on railway air conditioning system for changeable climatic conditions. In ICSAI 2018 5th International Conference on Systems and Informatics; 10-12 November 2018: Jiangsu, Nanjing, China, pp. 1294–1298, DOI:10.1109/ICSAI.2018.8599355.
  • [18] Radchenko, N. A concept of the design and operation of heat exchangers with change of phase. Archives of Thermodynamics 2004; 25(4): 3–18.
  • [19] Kruzel, M, Bohdal, T, Dutkowski, K, Radchenko, M. The Effect of Microencapsulated PCM Slurry Coolant on the Efficiency of a Shell and Tube Heat Exchanger. Energies 2022; 15: 5142, DOI: 10.3390/en15145142
  • [20] Radchenko, NI. On reducing the size of liquid separators for injector circulation plate freezers. International Journal of Refrigeration 1985, 8(5), 267–269.
  • [21] Yang, Z, Radchenko, M. Radchenko, A, Mikielewicz, D, Radchenko, R. Gas turbine intake air hybrid cooling systems and a new approach to their rational designing. Energies 2022; 15: 1474, DOI:10.3390/en15041474.
  • [22] Serbin, S, Radchenko, M, Pavlenko, A, Burunsuz, K, Radchenko, A, Chen, D. Improving Ecological Efficiency of Gas Turbine Power System by Combusting Hydrogen and Hydrogen-Natural Gas Mixtures. Energies 2023; 16(9): 3618, DOI: 10.3390/en16093618
  • [23] Yu, Z, Shevchenko, S, Radchenko, M, Shevchenko, O, Radchenko, A. Methodology of Designing Sealing Systems for Highly Loaded Rotary Machines. Sustainability 2022; 14(23): 15828, DOI:10.3390/su142315828.
  • [24] Radchenko, A, Scurtu, I-C, Radchenko, M, Forduy, S, Zubarev, A. Monitoring the efficiency of cooling air at the inlet of gas engine in integrated energy system. Thermal Science 2022, Part A; 26(1): 185–194, DOI:10.2298/TSCI200711344R.
  • [25] Radchenko, A, Radchenko, M, Mikielewicz, D, Pavlenko, A, Radchenko, R, Forduy, S. Energy saving in trigeneration plant for food industries. Energies 2022; 15: 1163, DOI:10.3390/en15031163.
  • [26] Forduy, S, Radchenko, A, Kuczynski, W, Zubarev, A, Konovalov, D. Enhancing the fuel efficiency of gas engines in integrated energy system by chilling cyclic air. In: Tonkonogyi V, Ivanov V, Trojanowska J, Oborskyi G, Edl M, Kuric I, Pavlenko I, Dasic P, editors. Lecture Notes in Mechanical Engineering, Advanced Manufacturing Processes, Selected Papers from the Grabchenko’s International Conference on Advanced Manufacturing Processes (InterPartner-2019), Odessa, Ukraine, 10–13 September 2019. Cham, Switzerland: Springer, 2020, pp. 500–509, DOI: 10.1007/978-3-030-40724-7_51.
  • [27] Radchenko, A, Radchenko, M, Koshlak, H, Radchenko, R, Forduy, S. Enhancing the efficiency of integrated energy system by redistribution of heat based of monitoring data. Energies 2022, 15: 8774. DOI: 10.3390/en15228774
  • [28] Radchenko A, Radchenko M, Konovalov D, Zubarev A. Increasing electrical power output and fuel efficiency of gas engines in integrated energy system by absorption chiller scavenge air cooling on the base of monitoring data treatment. HTRSE-2018, E3S Web of Conferences 70, 6 p., 03011. DOI: 10.1051/e3sconf/20187003011.
  • [29] Radchenko, A, Mikielewicz, D, Forduy, S, Radchenko, M, Zubarev, A. Monitoring the Fuel Efficiency of Gas Engine in Integrated Energy System. In: Nechyporuk M, Pavlikov V, Kritskiy D, editors. Integrated Computer Technologies in Mechanical Engineering ICTM 2019, Advances in Intelligent Systems and Computing 2020, 1113. Springer, Cham, pp. 361–370. DOI: 10.1007/978-3-030-37618-5_31.
  • [30] Radchenko, M, Radchenko, A, Mikielewicz, D, Radchenko, R, Andreev, A. A novel degree-hour method for rational design loading. Proc. Inst. Mech. Eng. Part A: Journal of Power and Energy 2022; 237(3): 570-579DOI:10.1177/09576509221135659.
  • [31] Konovalov, D, Tolstorebrov, I, Eikevik, TM, Kobalava, H, Radchenko, M, Hafner, A, Radchenko, A. Recent Developments in Cooling Systems and Cooling Management for Electric Motors. Energies 2023, 16, 7006, DOI: 10.3390/en16197006.
  • [32] Radchenko, M, Yang, Z, Pavlenko, A, Radchenko, A, Radchenko, R, Koshlak, H, Bao, G. Increasing the efficiency of turbine inlet air cooling in climatic conditions of China through rational designing—Part 1: A case study for subtropical climate: general approaches and criteria. Energies 2023; 16: 6105, DOI: 10.3390/en16176105
  • [33] Radchenko, M., Radchenko, R., Kornienko, V., Pyrysunko, M. (2019) Semi-Empirical Correlations of Pollution Processes on the Condensation Surfaces of Exhaust Gas Boilers with Water-Fuel Emulsion Combustion. In: Ivanov, V., Pavlenko, I., Liaposhchenko, O., Machado, J., Edl, M. (eds) Advances in Design, Simulation and Manufacturing II. DSMIE 2019. Lecture Notes in Mechanical Engineering (LNME). Springer, Cham (2020), pp.853-862, 2020. Springer Nature Switzerland AG 2020. https://doi.org/10.1007/978-3-030-22365-6_85.
  • [34] Kornienko, V, Radchenko, M, Radchenko, A, Koshlak, H, Radchenko, R. Enhancing the Fuel Efficiency of Cogeneration Plants by Fuel Oil Afterburning in Exhaust Gas before Boilers. Energies 2023, 16, 6743, DOI: 10.3390/en16186743.
  • [35] Wang, K, Zhao, C, Cai, Y. Effect of intake air humidification and EGR on combustion and emission characteristics of marine diesel engine at advanced injection timing. Journal of Thermal Science 2021; 30(4): 1174–1186.
  • [36] Danilecki, K, Eliasz, J. The Potential of Exhaust Waste Heat Use in a Turbocharged Diesel Engine for Charge Air Cooling. SAE Technical Paper 2020, pp. 2020–2089.
  • [37] Yang, Z, Korobko, V, Radchenko, M, Radchenko, R. Improving thermoacoustic low temperature heat recovery systems. Sustainability 2022; 14: 12306. DOI: 10.3390/su141912306.
  • [38] Shapiro, AH, Wadleigh, KR. The aerothermopressor – a device for improving the performance of a gas-turbine power plant. Proceedings of the Trans. ASME, Cambridge, USA, 1956, pp. 617–653.
  • [39] Konovalov, D, Radchenko, M, Kobalava, H, Kornienko, V, Maksymov, V, Radchenko, A, Radchenko, R. Research of characteristics of the flow part of an aerothermopressor for gas turbine intercooling air. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy 2022; 236(4): 634-646. DOI: 10.1177/09576509211057952.
  • [40] Fowle, A. An Experimental Investigation of an Aerothermopressor Having a Gas Flow Capacity of 25 Pounds per Second. Massachusetts Institute of Technology, USA, 1972.
  • [41] Yu, Z, Løvås, T, Konovalov, D, Trushliakov, E, Radchenko, M, Kobalava, H, Radchenko, R, Radchenko, A. Investigation of thermopressor with incomplete evaporation for gas turbine intercooling systems. Energies 2023; 16: 20, DOI: 10.3390/en16010020
  • [42] Konovalov D, Kobalava H, Radchenko M, Sviridov V, Scurtu I.C. Optimal Sizing of the Evaporation Chamber in the Low-Flow Aerothermopressor for a Combustion Engine. In: Tonkonogyi V, Ivanov V, Trojanowska J, Oborskyi G, Edl M, Kuric I, Pavlenko I, Dasic P, editors. Lecture Notes in Mechanical Engineering, Advanced Manufacturing Processes II (InterPartner 2020). Cham, Switzerland: Springer International Publishing, 2021. pp. 654–663.
  • [43] Fluent Tutorial Theory Guide Release 17.0. ANSYS, Inc. Canonsburg, 2016.
  • [44] Anderson, D, Tannehill, JC, Pletcher, RH. Computational Fluid Mechanics and Heat Transfer, third edition, 2016.
  • [45] Mazumder, S. Numerical Methods for Partial Differential Equations: Finite Difference and Finite Volume Methods, 2015.
  • [46] Zhou, Y. Rayleigh–Taylor and Richtmyer–Meshkov instability induced flow, turbulence, and mixing. II. Physics Reports 2017; 723–725: 1–160, DOI: 10.1016/j.physrep.
  • [47] Sirignano, WA. Fluid Dynamics and Transport of Droplets and Sprays. 2nd edn. New York: Cambridge University Press, 2010.
  • [48] Konovalov, D, Trushliakov, E, Radchenko, M, Kobalava, H, Maksymov, V. Research of the aerothermopresor cooling system of charge air of a marine internal combustion engine under variable climatic conditions of operation., In: Tonkonogyi V, Ivanov V, Trojanowska J, Oborskyi G, Edl M, Kuric I, Pavlenko I, Dasic P, editors. Lecture Notes in Mechanical Engineering, Advanced Manufacturing Processes, Selected Papers from the Grabchenko’s International Conference on Advanced Manufacturing Processes (InterPartner-2019), Odessa, Ukraine, 10–13 September 2019. Cham, Switzerland: Springer, 2020, pp. 520–529, DOI: 10.1007/978-3-030-40724-7_53.
  • [49] Borghi, R, Anselmet, F. Turbulent Multiphase Flows with Heat and Mass transfer. Wiley-ISTE, 2013. ISBN: 978-1-848-21617-4.
  • [50] Duroudier, J. Fluid Transport: Pipes. 2016.
  • [51] Dixon, SL, Hall, CA. Fluid Mechanics and Thermodynamics of Turbomachinery. Elsevier Science, 7th edition. 2013.
  • [52] Schobeiri, MT. Turbomachinery Flow Physics and Dynamic Performance. 2012.
  • [53] Childs, P. Mechanical Design Engineering Handbook. 2018.
  • [54] Cumo, M, Naviglio A. Thermal Hydraulics. 2018.
  • [55] Granet, I, Bluestein, M. Thermodynamics and Heat Power: 9th edition. 2014.
  • [56] Deich, ME, Zaryankin AE. Gas Dynamics of Diffusers and Outlet Pipes of Turbomachines, Energy, 1970.
  • [57] Smith IK. The Supersonic Aerothermopressor. Proceedings of the Institution of Mechanical Engineers. 1969;184(1):121-132. doi:10.1243/PIME_PROC_1969_184_014_02
  • [58] Shapiro, A.H.; Wadleigh, K.R.; Gavril, B.D.; Fowle, A.A. The Aerothermopressor – A Device for Improving the Performance of a Gas-Turbine Power Plant. Trans. Am. Soc. Mech. Eng. 2022, 78, 617–650. https://doi.org/10.1115/1.4013756.
Year 2024, Volume: 8 Issue: 2, 89 - 100, 30.06.2024
https://doi.org/10.30521/jes.1283526

Abstract

References

  • [1] Yang, Z, Kornienko, V, Radchenko, M, Radchenko, A, Radchenko, R. Research of exhaust gas boiler heat exchange surfaces with reduced corrosion when water-fuel emulsion combustion. Sustainability 2022; 14: 11927, DOI: 10.3390/su141911927.
  • [2] Kornienko, V, Radchenko, R, Bohdal, T, Radchenko, M, Andreev, A. Thermal Characteristics of the Wet Pollution Layer on Condensing Heating Surfaces of Exhaust Gas Boilers. In: Ivanov V, Pavlenko I, Liaposhchenko O, Machado J, Edl M, editors. Lecture Notes in Mechanical Engineering, Advances in Design, Simulation and Manufacturing IV, Proceedings of the 4th International Conference on Design, Simulation, Manufacturing: The Innovation Exchange, DSMIE-2021, Lviv, Ukraine, 8–11 June 2021; Springer: Cham, Switzerland, 2021; 2, pp. 339–348. DOI:10.1007/978-3-030-77823-1_34
  • [3] Yang, Z, Kornienko, V, Radchenko, M, Radchenko, A, Radchenko, R, Pavlenko, A. Capture of pollutants from exhaust gases by low-temperature heating surfaces. Energies 2022; 15(1): 120. DOI:10.3390/EN15010120.
  • [4] Kornienko, V, Radchenko, R, Radchenko, M, Radchenko, A, Pavlenko, A, Konovalov, D. Cooling cyclic air of marine engine with water-fuel emulsion combustion by exhaust heat recovery chiller. Energies 2022; 15: 248, DOI:10.3390/en15010248.
  • [5] Kurt, E, Demirci, M, Şahin, HM. Numerical analyses of the concentrated solar receiver pipes with superheated steam. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy. 2022;236(5):893-910. doi:10.1177/09576509221074524.
  • [6] Radchenko, R, Tsoy, A, Forduy S, Anatoliy Z, Kalinichenko I. Utilizing the heat of gas module by an absorption lithium-bromide chiller with an ejector booster stage. In: AIP Conference Proceedings 2020, Coimbatore, India, 17–18 July 2020; AIP Publishing LLC: Melville, NY, USA, 2020; Volume 2285: 030084. DOI:10.1063/5.0026788.
  • [7] Radchenko, N, Trushliakov, E, Tsoy, A, Shchesiuk, O. Methods to determine a design cooling capacity of ambient air conditioning systems in climatic conditions of Ukraine and Kazakhstan. In: AIP Conference Proceedings 2020, Coimbatore, India, 17–18 July 2020; AIP Publishing LLC: Melville, NY, USA, 2020; Volume 2285: 030074, DOI:10.1063/5.0026790.
  • [8] Trushliakov, E, Radchenko, M, Radchenko, A, Kantor, S, Zongming, Y. Statistical approach to improve the efficiency of air conditioning system performance in changeable climatic conditions. In ICSAI 2018 5th International Conference on Systems and Informatics; 10-12 November 2018: Jiangsu, Nanjing, China, pp. 256–260. DOI:10.1109/ICSAI.2018.8599434.
  • [9] Radchenko A, Tsoy A, Portnoi B, Kantor S. Increasing the efficiency of gas turbine inlet air cooling in actual climatic conditions of Kazakhstan and Ukraine. In: AIP Conference Proceedings 2020, Coimbatore, India, 17–18 July 2020; AIP Publishing LLC: Melville, NY, USA, 2020; Volume 2285: 030071, DOI:10.1063/5.0026787.
  • [10] Radchenko, M, Mikielewicz, D, Andreev, A, Vanyeyev, S, Savenkov, O. Efficient Ship Engine Cyclic Air Cooling by Turboexpander Chiller for Tropical Climatic Conditions. In: Nechyporuk M, Pavlikov V, Kritskiy D, editors. Lecture Notes in Networks and Systems, Proceedings of the Conference on Integrated Computer Technologies in Mechanical Engineering–Synergetic Engineering, ICTM 2020, Kharkiv, Ukraine, 28–29 October 2021; Cham, Switzerland: Springer, 2021; 188: pp. 498–507.
  • [11] Yang, Z, Konovalov, D, Radchenko, M, Radchenko, R, Kobalava, H, Radchenko, A, Kornienko, V. Analysis of efficiency of thermopressor application for internal combustion engine. Energies 2022; 15: 2250, DOI:10.3390/en15062250.
  • [12] Yang, Z, Radchenko, R, Radchenko, M, Radchenko, A, Kornienko, V. Cooling potential of ship engine intake air cooling and its realization on the route line. Sustainability 2022; 14: 15058, DOI:10.3390/su142215058.
  • [13] Radchenko, M, Radchenko, A, Trushliakov, E, Pavlenko, AM, Radchenko, R. Advanced method of variable refrigerant flow (VRF) systems designing to forecast on site operation–Part 1: General approaches and criteria. Energies 2023; 16: 1381, DOI:10.3390/en16031381
  • [14] Radchenko, M, Radchenko, A, Trushliakov, E, Koshlak, H, Radchenko, R. Advanced method of variable refrigerant flow (VRF) systems designing to forecast on site operation– Part 2: Phenomenological simulation to recuperate refrigeration energy. Energies 2023; 16: 1922, DOI:10.3390/en16041922
  • [15] Radchenko, M, Radchenko, A, Trushliakov, E, Pavlenko, A, Radchenko, R. Advanced method of variable refrigerant flow (VRF) system design to forecast on site operation–Part 3: Optimal solutions to minimize sizes. Energies 2023; 16: 2417. https://doi.org/10.3390/en16052417
  • [16] Radchenko, N, Tsoy, A, Mikielewicz, D, Kantor, S, Tkachenko, V. Improving the efficiency of railway conditioners in actual climatic conditions of operation. In: AIP Conference Proceedings 2020, Coimbatore, India, 17–18 July 2020; AIP Publishing LLC: Melville, NY, USA, 2020; Volume 2285: 030072, DOI:10.1063/5.0026789.
  • [17] Radchenko, A, Radchenko, M, Trushliakov, E, Kantor, S, Tkachenko, V. Statistical method to define rational heat loads on railway air conditioning system for changeable climatic conditions. In ICSAI 2018 5th International Conference on Systems and Informatics; 10-12 November 2018: Jiangsu, Nanjing, China, pp. 1294–1298, DOI:10.1109/ICSAI.2018.8599355.
  • [18] Radchenko, N. A concept of the design and operation of heat exchangers with change of phase. Archives of Thermodynamics 2004; 25(4): 3–18.
  • [19] Kruzel, M, Bohdal, T, Dutkowski, K, Radchenko, M. The Effect of Microencapsulated PCM Slurry Coolant on the Efficiency of a Shell and Tube Heat Exchanger. Energies 2022; 15: 5142, DOI: 10.3390/en15145142
  • [20] Radchenko, NI. On reducing the size of liquid separators for injector circulation plate freezers. International Journal of Refrigeration 1985, 8(5), 267–269.
  • [21] Yang, Z, Radchenko, M. Radchenko, A, Mikielewicz, D, Radchenko, R. Gas turbine intake air hybrid cooling systems and a new approach to their rational designing. Energies 2022; 15: 1474, DOI:10.3390/en15041474.
  • [22] Serbin, S, Radchenko, M, Pavlenko, A, Burunsuz, K, Radchenko, A, Chen, D. Improving Ecological Efficiency of Gas Turbine Power System by Combusting Hydrogen and Hydrogen-Natural Gas Mixtures. Energies 2023; 16(9): 3618, DOI: 10.3390/en16093618
  • [23] Yu, Z, Shevchenko, S, Radchenko, M, Shevchenko, O, Radchenko, A. Methodology of Designing Sealing Systems for Highly Loaded Rotary Machines. Sustainability 2022; 14(23): 15828, DOI:10.3390/su142315828.
  • [24] Radchenko, A, Scurtu, I-C, Radchenko, M, Forduy, S, Zubarev, A. Monitoring the efficiency of cooling air at the inlet of gas engine in integrated energy system. Thermal Science 2022, Part A; 26(1): 185–194, DOI:10.2298/TSCI200711344R.
  • [25] Radchenko, A, Radchenko, M, Mikielewicz, D, Pavlenko, A, Radchenko, R, Forduy, S. Energy saving in trigeneration plant for food industries. Energies 2022; 15: 1163, DOI:10.3390/en15031163.
  • [26] Forduy, S, Radchenko, A, Kuczynski, W, Zubarev, A, Konovalov, D. Enhancing the fuel efficiency of gas engines in integrated energy system by chilling cyclic air. In: Tonkonogyi V, Ivanov V, Trojanowska J, Oborskyi G, Edl M, Kuric I, Pavlenko I, Dasic P, editors. Lecture Notes in Mechanical Engineering, Advanced Manufacturing Processes, Selected Papers from the Grabchenko’s International Conference on Advanced Manufacturing Processes (InterPartner-2019), Odessa, Ukraine, 10–13 September 2019. Cham, Switzerland: Springer, 2020, pp. 500–509, DOI: 10.1007/978-3-030-40724-7_51.
  • [27] Radchenko, A, Radchenko, M, Koshlak, H, Radchenko, R, Forduy, S. Enhancing the efficiency of integrated energy system by redistribution of heat based of monitoring data. Energies 2022, 15: 8774. DOI: 10.3390/en15228774
  • [28] Radchenko A, Radchenko M, Konovalov D, Zubarev A. Increasing electrical power output and fuel efficiency of gas engines in integrated energy system by absorption chiller scavenge air cooling on the base of monitoring data treatment. HTRSE-2018, E3S Web of Conferences 70, 6 p., 03011. DOI: 10.1051/e3sconf/20187003011.
  • [29] Radchenko, A, Mikielewicz, D, Forduy, S, Radchenko, M, Zubarev, A. Monitoring the Fuel Efficiency of Gas Engine in Integrated Energy System. In: Nechyporuk M, Pavlikov V, Kritskiy D, editors. Integrated Computer Technologies in Mechanical Engineering ICTM 2019, Advances in Intelligent Systems and Computing 2020, 1113. Springer, Cham, pp. 361–370. DOI: 10.1007/978-3-030-37618-5_31.
  • [30] Radchenko, M, Radchenko, A, Mikielewicz, D, Radchenko, R, Andreev, A. A novel degree-hour method for rational design loading. Proc. Inst. Mech. Eng. Part A: Journal of Power and Energy 2022; 237(3): 570-579DOI:10.1177/09576509221135659.
  • [31] Konovalov, D, Tolstorebrov, I, Eikevik, TM, Kobalava, H, Radchenko, M, Hafner, A, Radchenko, A. Recent Developments in Cooling Systems and Cooling Management for Electric Motors. Energies 2023, 16, 7006, DOI: 10.3390/en16197006.
  • [32] Radchenko, M, Yang, Z, Pavlenko, A, Radchenko, A, Radchenko, R, Koshlak, H, Bao, G. Increasing the efficiency of turbine inlet air cooling in climatic conditions of China through rational designing—Part 1: A case study for subtropical climate: general approaches and criteria. Energies 2023; 16: 6105, DOI: 10.3390/en16176105
  • [33] Radchenko, M., Radchenko, R., Kornienko, V., Pyrysunko, M. (2019) Semi-Empirical Correlations of Pollution Processes on the Condensation Surfaces of Exhaust Gas Boilers with Water-Fuel Emulsion Combustion. In: Ivanov, V., Pavlenko, I., Liaposhchenko, O., Machado, J., Edl, M. (eds) Advances in Design, Simulation and Manufacturing II. DSMIE 2019. Lecture Notes in Mechanical Engineering (LNME). Springer, Cham (2020), pp.853-862, 2020. Springer Nature Switzerland AG 2020. https://doi.org/10.1007/978-3-030-22365-6_85.
  • [34] Kornienko, V, Radchenko, M, Radchenko, A, Koshlak, H, Radchenko, R. Enhancing the Fuel Efficiency of Cogeneration Plants by Fuel Oil Afterburning in Exhaust Gas before Boilers. Energies 2023, 16, 6743, DOI: 10.3390/en16186743.
  • [35] Wang, K, Zhao, C, Cai, Y. Effect of intake air humidification and EGR on combustion and emission characteristics of marine diesel engine at advanced injection timing. Journal of Thermal Science 2021; 30(4): 1174–1186.
  • [36] Danilecki, K, Eliasz, J. The Potential of Exhaust Waste Heat Use in a Turbocharged Diesel Engine for Charge Air Cooling. SAE Technical Paper 2020, pp. 2020–2089.
  • [37] Yang, Z, Korobko, V, Radchenko, M, Radchenko, R. Improving thermoacoustic low temperature heat recovery systems. Sustainability 2022; 14: 12306. DOI: 10.3390/su141912306.
  • [38] Shapiro, AH, Wadleigh, KR. The aerothermopressor – a device for improving the performance of a gas-turbine power plant. Proceedings of the Trans. ASME, Cambridge, USA, 1956, pp. 617–653.
  • [39] Konovalov, D, Radchenko, M, Kobalava, H, Kornienko, V, Maksymov, V, Radchenko, A, Radchenko, R. Research of characteristics of the flow part of an aerothermopressor for gas turbine intercooling air. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy 2022; 236(4): 634-646. DOI: 10.1177/09576509211057952.
  • [40] Fowle, A. An Experimental Investigation of an Aerothermopressor Having a Gas Flow Capacity of 25 Pounds per Second. Massachusetts Institute of Technology, USA, 1972.
  • [41] Yu, Z, Løvås, T, Konovalov, D, Trushliakov, E, Radchenko, M, Kobalava, H, Radchenko, R, Radchenko, A. Investigation of thermopressor with incomplete evaporation for gas turbine intercooling systems. Energies 2023; 16: 20, DOI: 10.3390/en16010020
  • [42] Konovalov D, Kobalava H, Radchenko M, Sviridov V, Scurtu I.C. Optimal Sizing of the Evaporation Chamber in the Low-Flow Aerothermopressor for a Combustion Engine. In: Tonkonogyi V, Ivanov V, Trojanowska J, Oborskyi G, Edl M, Kuric I, Pavlenko I, Dasic P, editors. Lecture Notes in Mechanical Engineering, Advanced Manufacturing Processes II (InterPartner 2020). Cham, Switzerland: Springer International Publishing, 2021. pp. 654–663.
  • [43] Fluent Tutorial Theory Guide Release 17.0. ANSYS, Inc. Canonsburg, 2016.
  • [44] Anderson, D, Tannehill, JC, Pletcher, RH. Computational Fluid Mechanics and Heat Transfer, third edition, 2016.
  • [45] Mazumder, S. Numerical Methods for Partial Differential Equations: Finite Difference and Finite Volume Methods, 2015.
  • [46] Zhou, Y. Rayleigh–Taylor and Richtmyer–Meshkov instability induced flow, turbulence, and mixing. II. Physics Reports 2017; 723–725: 1–160, DOI: 10.1016/j.physrep.
  • [47] Sirignano, WA. Fluid Dynamics and Transport of Droplets and Sprays. 2nd edn. New York: Cambridge University Press, 2010.
  • [48] Konovalov, D, Trushliakov, E, Radchenko, M, Kobalava, H, Maksymov, V. Research of the aerothermopresor cooling system of charge air of a marine internal combustion engine under variable climatic conditions of operation., In: Tonkonogyi V, Ivanov V, Trojanowska J, Oborskyi G, Edl M, Kuric I, Pavlenko I, Dasic P, editors. Lecture Notes in Mechanical Engineering, Advanced Manufacturing Processes, Selected Papers from the Grabchenko’s International Conference on Advanced Manufacturing Processes (InterPartner-2019), Odessa, Ukraine, 10–13 September 2019. Cham, Switzerland: Springer, 2020, pp. 520–529, DOI: 10.1007/978-3-030-40724-7_53.
  • [49] Borghi, R, Anselmet, F. Turbulent Multiphase Flows with Heat and Mass transfer. Wiley-ISTE, 2013. ISBN: 978-1-848-21617-4.
  • [50] Duroudier, J. Fluid Transport: Pipes. 2016.
  • [51] Dixon, SL, Hall, CA. Fluid Mechanics and Thermodynamics of Turbomachinery. Elsevier Science, 7th edition. 2013.
  • [52] Schobeiri, MT. Turbomachinery Flow Physics and Dynamic Performance. 2012.
  • [53] Childs, P. Mechanical Design Engineering Handbook. 2018.
  • [54] Cumo, M, Naviglio A. Thermal Hydraulics. 2018.
  • [55] Granet, I, Bluestein, M. Thermodynamics and Heat Power: 9th edition. 2014.
  • [56] Deich, ME, Zaryankin AE. Gas Dynamics of Diffusers and Outlet Pipes of Turbomachines, Energy, 1970.
  • [57] Smith IK. The Supersonic Aerothermopressor. Proceedings of the Institution of Mechanical Engineers. 1969;184(1):121-132. doi:10.1243/PIME_PROC_1969_184_014_02
  • [58] Shapiro, A.H.; Wadleigh, K.R.; Gavril, B.D.; Fowle, A.A. The Aerothermopressor – A Device for Improving the Performance of a Gas-Turbine Power Plant. Trans. Am. Soc. Mech. Eng. 2022, 78, 617–650. https://doi.org/10.1115/1.4013756.
There are 58 citations in total.

Details

Primary Language English
Subjects Mechanical Engineering
Journal Section Research Articles
Authors

Dmytro Konovalov 0000-0001-7127-0487

Halina Kobalava 0000-0002-0634-5814

Roman Radchenko This is me 0000-0003-2211-3500

Mykola Radchenko 0000-0002-1596-6508

Anatoliy Zubarev This is me 0000-0001-7868-4519

Felix Tsaran This is me 0000-0002-7165-3995

Artem Hrych This is me 0000-0002-2142-3665

Sergey Anastasenko 0000-0002-5201-5146

Early Pub Date June 23, 2024
Publication Date June 30, 2024
Acceptance Date March 7, 2024
Published in Issue Year 2024 Volume: 8 Issue: 2

Cite

Vancouver Konovalov D, Kobalava H, Radchenko R, Radchenko M, Zubarev A, Tsaran F, Hrych A, Anastasenko S. Research of hydrodynamic processes in the flow part of a low-flow thermopressor. Journal of Energy Systems. 2024;8(2):89-100.

Journal of Energy Systems is the official journal of 

European Conference on Renewable Energy Systems (ECRES8756 and


Electrical and Computer Engineering Research Group (ECERG)  8753


Creative Commons License JES is licensed to the public under a Creative Commons Attribution 4.0 license.