Energy that can be obtained from natural resources and constantly replenished by nature is called “renewable energy”. To harness solar energy and convert it into electricity, a device known as a solar panel is utilized. However, solar panels encounter certain drawbacks, including reduced efficiency as the panel temperature rises and the partial absorption of sunlight due to its reflection by the top glass layer. This study aims to optimize solar panel efficiency by innovatively integrating a cooling system with water treatments and an aluminum foil reflector to enhance energy output. The study focused on a 700 mm × 510 mm × 30 mm monocrystalline solar panel. Initial efficiency improved significantly after implementing the cooling and reflector system. Based on measurement data, incorporating the reflector, revealed an average temperature of 61.3°C and solar radiation of 871.10 W/m². The cooling duration of 40.64 seconds was achieved with a water pump flow rate of 0.29 lt/s. Notably, the combined approach yielded substantial efficiency enhancements, with the solar panel reaching peak efficiency levels of 10.36%.
Primary Language | English |
---|---|
Subjects | Solar Energy Systems |
Journal Section | Research Articles |
Authors | |
Early Pub Date | June 23, 2024 |
Publication Date | June 30, 2024 |
Acceptance Date | April 24, 2024 |
Published in Issue | Year 2024 Volume: 8 Issue: 2 |
Journal of Energy Systems is the official journal of
European Conference on Renewable Energy Systems (ECRES) and
Electrical and Computer Engineering Research Group (ECERG)
Journal of Energy Systems is licensed under CC BY-NC 4.0