Research Article
BibTex RIS Cite

Pretreatment of sugarcane bagasse autoclave via assisted-alkali hydrogen peroxide and enzymatic hydrolysis on mucor circinelloides cultivation

Year 2024, Volume: 8 Issue: 4, 182 - 192, 31.12.2024
https://doi.org/10.30521/jes.1410571

Abstract

This study aims to evaluate the characteristics and feasibility of the autoclave assisted-alkali hydrogen peroxide delignification and enzymatic hydrolysis pretreated sugarcane bagasse for Mucor circinelloides cultivation to produce biofuels. The experimental setup consists of unpretreated sugarcane bagasse (SCB), delignified SCB, hydrolyzed SCB, and delignified-hydrolyzed SCB. The characterization was done using FTIR, XRD, and HHV calorimeter. The pretreatment of sugarcane bagasse using autoclave-assisted alkali hydrogen peroxide delignification was able to remove the lignin and hemicellulose. At the same time, the following enzymatic hydrolysis was able to increase the digestibility of sugarcane bagasse’s cellulose, making it suitable for Mucor circinelloides cultivation. The cultivation of Mucor circinelloides was done in the 100 ml sugarcane bagasse hydrolysate medium for 72 hours and a 250 rpm stirring rate produced approximately 9.1 grams of lipid.

Supporting Institution

Institut Teknologi Sepuluh Nopember, Indonesia Minister for Education and Research

Project Number

1936/PKS/ITS/2023

Thanks

The authors are grateful for financial support from Institut Teknologi Sepuluh Nopember under contract no: 1936/PKS/ITS/2023

References

  • [1] Abe, JO, Popoola, API, Ajenifuja, E, Popoola, OM. Hydrogen energy, economy and storage: Review and recommendation., Int J Hydrogen Energy, 2019;, 44, 1: 15072–15086, DOI: 10.1016/j.ijhydene.2019.04.068.
  • [2] Vermaak, L, Neomagus, HWJP, Bessarabov, DG. Recent Advances in Membrane-Based Electrochemical Hydrogen Separation: A Review., Membranes (Basel), 2021;, 11, 1: 127, DOI: 10.3390/membranes11020127.
  • [3] Shafiee, S, Topal, E. When will fossil fuel reserves be diminished?., Energy Policy, 2009;, 37, 1: 181–189, DOI: 10.1016/j.enpol.2008.08.016.
  • [4] Bölük, G, Mert, M. Fossil & renewable energy consumption, GHGs (greenhouse gases) and economic growth: Evidence from a panel of EU (European Union) countries., Energy, 2014;, 74, 1: 439–446, DOI: 10.1016/j.energy.2014.07.008.
  • [5] Padder, SA, Khan, R, Rather, RA. Biofuel generations: New insights into challenges and opportunities in their microbe-derived industrial production., Biomass Bioenergy, 2024;, 185, 1: 107220, DOI: 10.1016/j.biombioe.2024.107220.
  • [6] Farobie, O, Hartulistiyoso, E. Palm Oil Biodiesel as a Renewable Energy Resource in Indonesia: Current Status and Challenges., Bioenergy Res, 2022;, 15, 1: 93–111, DOI: 10.1007/s12155-021-10344-7.
  • [7] Badan Pusat Statistik. Statistik Tebu Indonesia 2021. BPS RI, 2021.
  • [8] Yudo, H, Jatmiko, S. ANALISA TEKNIS KEKUATAN MEKANIS MATERIAL KOMPOSIT BERPENGUAT SERAT AMPAS TEBU (BAGGASE) DITINJAU DARI KEKUATAN TARIK DAN IMPAK., Kapal: Jurnal Ilmu Pengetahuan dan Teknologi Kelautan, 2008;, 5, 1: 95–101, DOI: 10.14710/KPL.V5I2.3197.
  • [9] Tyagi, S, Lee, KJ, Mulla, SI, Garg, N, Chae, JC. Production of Bioethanol From Sugarcane Bagasse: Current Approaches and Perspectives., Applied Microbiology and Bioengineering, 2019;, 1: 21–42, DOI: 10.1016/B978-0-12-815407-6.00002-2.
  • [10] Nguyen, HC, Su, CH, Yu, YK, Huong, DTM. Sugarcane bagasse as a novel carbon source for heterotrophic cultivation of oleaginous microalga Schizochytrium sp., Ind Crops Prod, 2018;, 121, 1: 99–105, DOI: 10.1016/J.INDCROP.2018.05.005.
  • [11] Carvalho, AKF, Bento, HBS, Reis, CER, De Castro, HF. Sustainable enzymatic approaches in a fungal lipid biorefinery based in sugarcane bagasse hydrolysate as carbon source., Bioresour Technol, 2019;, 276, 1: 269–275, DOI: 10.1016/J.BIORTECH.2018.12.118.
  • [12] Mu, J, Li, S, Chen, D, Xu, H, Han, F, Feng, B, Li, Y. Enhanced biomass and oil production from sugarcane bagasse hydrolysate (SBH) by heterotrophic oleaginous microalga Chlorella protothecoides., Bioresour Technol, 2015;, 185, 1: 99–105, DOI: 10.1016/J.BIORTECH.2015.02.082.
  • [13] Xavier, MCA, Coradini, ALV, Deckmann, AC, Franco, TT. Lipid production from hemicellulose hydrolysate and acetic acid by Lipomyces starkeyi and the ability of yeast to metabolize inhibitors., Biochem Eng J, 2017;, 118, 1: 11–19, DOI: 10.1016/J.BEJ.2016.11.007.
  • [14] Ananthi, V, Prakash, GS, Chang, SW, Ravindran, B, Nguyen, DD, Vo, DVN, La, DD, Bach, QV, Wong, JWC, Gupta, SK, Selvaraj, A, Arun, A. Enhanced microbial biodiesel production from lignocellulosic hydrolysates using yeast isolates., Fuel, 2019;, 256, 1: 115932, DOI: 10.1016/J.FUEL.2019.115932.
  • [15] Chintagunta, AD, Zuccaro, G, Kumar, M, Kumar, SPJ, Garlapati, VK, Postemsky, PD, Kumar, NSS, Chandel, AK, Gandara, JS. Biodiesel Production From Lignocellulosic Biomass Using Oleaginous Microbes: Prospects for Integrated Biofuel Production., Frontiers in Microbiology, 12. Frontiers Media S.A., Aug. 12, 2021. DOI: 10.3389/fmicb.2021.658284.
  • [16] Kamoun, O, Muralitharan, G, Belghith, H, Gargouri, A, Trigui-Lahiani, H. Suitable carbon sources selection and ranking for biodiesel production by oleaginous Mucor circinelloides using multi-criteria analysis approach., Fuel, 2019;, 257, 1: 116117, DOI: 10.1016/J.FUEL.2019.116117.
  • [17] Niju, S, Swathika, M. Delignification of sugarcane bagasse using pretreatment strategies for bioethanol production., Biocatal Agric Biotechnol, 2019;, 20, 1: 101263, doi: 10.1016/J.BCAB.2019.101263.
  • [18] Zendrato, HM, Masruchin, N, Nikmatin, S, Wistara, NJ. Effective cellulose isolation from torch ginger stem by alkaline hydrogen peroxide – Peracetic acid system., Journal of Industrial and Engineering Chemistry, 2023;, DOI: 10.1016/J.JIEC.2023.10.040.
  • [19] Rezeki Muria, S, Akbar Kemala, Z, Hafiz Hidayat, A, Chairul, Sri Irianti, R. Study on the effect of mixed acid hydrolysis on the glucose production from young coconut husks., Mater Today Proc, 2023;, 87, 1: 376–382, DOI: 10.1016/J.MATPR.2023.04.170.
  • [20] Ben Atitallah, I, Antonopoulou, G, Ntaikou, I, Beobide, AS, Dracopoulos, V, Mechichi, T, Lyberatos, G. A Comparative Study of Various Pretreatment Approaches for Bio-Ethanol Production from Willow Sawdust, Using Co-Cultures and Mono-Cultures of Different Yeast Strains., Molecules 2022, Vol. 27, Page 1344, 2022;, 27, 1: 1344, DOI: 10.3390/MOLECULES27041344.
  • [21] Carvalho, AKF, Bento, HBS, Reis, CER, De Castro, HF. Sustainable enzymatic approaches in a fungal lipid biorefinery based in sugarcane bagasse hydrolysate as carbon source., Bioresour Technol, 2019;, 276, 1: 269–275, DOI: 10.1016/J.BIORTECH.2018.12.118.
  • [22] Berthomieu, C, Hienerwadel, R. Fourier transform infrared (FTIR) spectroscopy., Photosynth Res, 2009;, 101, 1: 157–170, DOI: 10.1007/s11120-009-9439-x.
  • [23] Ahvenainen, P, Kontro, I, Svedström, K. Comparison of sample crystallinity determination methods by X-ray diffraction for challenging cellulose I materials., Cellulose, 2016;, 23, 1: 1073–1086, DOI: 10.1007/S10570-016-0881-6/FIGURES/7.
  • [24] B., Dictionary of Energy, 2015;, 1: 41–81, DOI: 10.1016/B978-0-08-096811-7.50002-0.
  • [25] Ehara, K, Takada, D, Saka, S. GC-MS and IR spectroscopic analyses of the lignin-derived products from softwood and hardwood treated in supercritical water., Journal of Wood Science, 2005;, 51, 1: 256–261, DOI: 10.1007/s10086-004-0653-z.
  • [26] Liu, Y. Y. et al., Reinforced alkali-pretreatment for enhancing enzymatic hydrolysis of sugarcane bagasse., Fuel Processing Technology, 2016;, 143, 1: 1–6, DOI: 10.1016/j.fuproc.2015.11.004.
  • [27] Corrales, RCNR, Mendes, FMT, Perrone, CC, Sant’Anna, C, Souza, W, Abud, Y, Bon, EPPS, Leitao, VF. Structural evaluation of sugar cane bagasse steam pretreated in the presence of CO2 and SO2., Biotechnol Biofuels, 2012;, 5, DOI: 10.1186/1754-6834-5-36.
  • [28] Karlen, D. L. Cellulosic Energy Cropping Systems Editor WILEY SERIES IN RENEWABLE RESOURCES.
  • [29] Refaat, AA. Biofuels from Waste Materials., Comprehensive Renewable Energy, 2012;, 1: 217–261, DOI: 10.1016/B978-0-08-087872-0.00518-7.
  • [30] Kininge, MM, Gogate, PR. Intensification of alkaline delignification of sugarcane bagasse using ultrasound assisted approach., Ultrason Sonochem, 2022;, 82, 1: 105870, DOI: 10.1016/j.ultsonch.2021.105870.
  • [31] Long, J, Li, X, Guo, B, Wang, L, Zhang, N. Catalytic delignification of sugarcane bagasse in the presence of acidic ionic liquids., Catal Today, 2013;, 200, 1: 99–105, DOI: 10.1016/J.CATTOD.2012.08.018.
  • [32] Xu, C, Zhang, J, Zhang, Y, Guo, Y, Xu, H, Liang, C, Wang, Z, Xu, J. Lignin prepared from different alkaline pretreated sugarcane bagasse and its effect on enzymatic hydrolysis., Int J Biol Macromol, 2019;, 141, 1: 484–492, DOI: 10.1016/j.ijbiomac.2019.08.263.
  • [33] Maryana, R, Ma’rifatun, D, Wheni, IA, Rizal, WA. Alkaline Pretreatment on Sugarcane Bagasse for Bioethanol Production., Energy Procedia, 2014;, 47, 1: 250–254, DOI: 10.1016/J.EGYPRO.2014.01.221.
  • [34] Zhao, X, van der Heide, E, Zhang, T, Liu, D. Delignification of sugarcane bagasse with alkali and peracetic acid and characterization of the pulp., Bioresources, 2010;, 5, 1: 1565–1580, DOI: 10.15376/biores.5.3.1565-1580.
  • [35] Bilba, K, Ouensanga, A. Fourier transform infrared spectroscopic study of thermal degradation of sugar cane bagasse., J Anal Appl Pyrolysis, 1996;, 38, 1: 61–73, DOI: 10.1016/S0165-2370(96)00952-7.
  • [36] Ling, R, Wei, W, Jin, Y. Pretreatment of sugarcane bagasse with acid catalyzed ethylene glycol–water to improve the cellulose enzymatic conversion., Bioresour Technol, 2022;, 361, 1: 127723, DOI: 10.1016/j.biortech.2022.127723.
  • [37] Zahoor, Madadi, M, Nazar, M, Shah, SWA, Li, N, Imtiaz, M, Zhong, Z, Zhu, D. Green alkaline fractionation of sugarcane bagasse at cold temperature improves digestibility and delignification without the washing processes and release of hazardous waste., Ind Crops Prod, 2023;, 200, 1: 116815, DOI: 10.1016/j.indcrop.2023.116815.
  • [38] Zhu, Y, Qi, B, Liang, X, Luo, J, Wan, Y. Lewis acid-mediated aqueous glycerol pretreatment of sugarcane bagasse: Pretreatment recycling, one-pot hydrolysis and lignin properties., Renew Energy, 2021;, 178, 1: 1456–1465, DOI: 10.1016/j.renene.2021.07.006.
  • [39] Valladares-Diestra, KK, Vandenberghe, LPS, Torres, LAZ, Nishida, VS, Filho, AZ, Woiciechowski, AL, Soccol, CR. Imidazole green solvent pre-treatment as a strategy for second-generation bioethanol production from sugarcane bagasse., Chemical Engineering Journal, 2021;, 420, 1: 127708, DOI: 10.1016/j.cej.2020.127708.
  • [40] Bartos, A, Anggono, J, Farkas, AE, Kun, D, Soetaredjo, FE, Moczo, J, Antoni, Purwaningsih, H, Pukanszky, B. Alkali treatment of lignocellulosic fibers extracted from sugarcane bagasse: Composition, structure, properties., Polym Test, 2020;, 88, 1: 106549, DOI: 10.1016/j.polymertesting.2020.106549.
  • [41] Escobar, ELN, Suota, MJ, Ramos, LP, Corazza, ML. Combination of green solvents for efficient sugarcane bagasse fractionation., Biomass Bioenergy, 2022;, 161, 1: 106482, DOI: 10.1016/j.biombioe.2022.106482.
  • [42] Wang, B, Qi, J, Xie, M, Wang, X, Xu, J, Yu, Z, Zhao, W, Xiao, Y, Wei, W. Enhancement of sugar release from sugarcane bagasse through NaOH-catalyzed ethylene glycol pretreatment and water-soluble sulfonated lignin., Int J Biol Macromol, 2022;, 221, 1: 38–47, DOI: 10.1016/j.ijbiomac.2022.08.193.
  • [43] Schmatz, AA, Candido, JP, de Angelis, DF, Brienzo, M. Semi-Simultaneous Saccharification and Fermentation Improved by Lignin and Extractives Removal from Sugarcane Bagasse., Fermentation, 2023;, 9, 1: 405, DOI: 10.3390/fermentation9050405.
  • [44] Lu, H, Liu, S, Shi, Y, Chen, Q. Efficient delignification of sugarcane bagasse by Fenton oxidation coupled with ultrasound-assisted NaOH for biotransformation from Agaricus sinodeliciosus var. Chaidam., Chemical Engineering Journal, 2022;, 448, 1: 137719, DOI: 10.1016/j.cej.2022.137719.
  • [45] Seo, YJ, Oh, DS, Lee, JW. Study on the possibility of waste mushroom medium as a biomass resource for biorefinery., Journal of Industrial and Engineering Chemistry, 2013;, 19, 1: 1535–1539, DOI: 10.1016/J.JIEC.2013.01.020.
  • [46] Zhu, L, O’Dwyer, JP, Chang, VS, Granda, CB, Holtzapple, MT. Structural features affecting biomass enzymatic digestibility., Bioresour Technol, 2008;, 99, 1: 3817–3828, DOI: 10.1016/j.biortech.2007.07.033.
  • [47] Dourou, M, Aggeli, D, Papanikolaou, S, Aggelis, G. Critical steps in carbon metabolism affecting lipid accumulation and their regulation in oleaginous microorganisms., Appl Microbiol Biotechnol, 2018;, 102, 1: 2509–2523, DOI: 10.1007/s00253-018-8813-z.
  • [48] Yang, J, Li, S, Kabir Khan, MdA, Garre, V, Vongsangnak, W, Song, Y. Increased Lipid Accumulation in Mucor circinelloides by Overexpression of Mitochondrial Citrate Transporter Genes., Ind Eng Chem Res, 2019;, 58, 1: 2125–2134, DOI: 10.1021/acs.iecr.8b05564.
  • [49] Dourou, M, Mizerakis, P, Papanikolaou, S, Aggelis, G. Storage lipid and polysaccharide metabolism in Yarrowia lipolytica and Umbelopsis isabellina., Appl Microbiol Biotechnol, 2017;, 101, 1: 7213–7226, DOI: 10.1007/s00253-017-8455-6.
  • [50] Fazili, ABA, Shah, Am, Zan, X, Naz, T, Nosheen, S, Nazir, Y, Ullah, S, Zhang, H, Song, Y. Mucor circinelloides: a model organism for oleaginous fungi and its potential applications in bioactive lipid production., Microb Cell Fact, 2022;, 21, 1: 29, DOI: 10.1186/s12934-022-01758-9.
  • [51] Palmonari, A, Cavalini, D, Sniffen, CJ, Fernandes, L, Holder, P, Fagioli, L, Fusaro, I, Biagi, G, Formigoni, A, Mammi, L. Short communication: Characterization of molasses chemical composition., J Dairy Sci, 2020;, 103, 1: 6244–6249, DOI: 10.3168/jds.2019-17644.
  • [52] Lubbehusen, TL, Nielsen, J, McIntyre, M. Characterization of the Mucor circinelloides life cycle by on-line image analysis., J Appl Microbiol, 2003;, 95, 1: 1152–1160, DOI: 10.1046/j.1365-2672.2003.02098.x.
  • [53] Patiño-Medina, J. A, Alejandre-Castaneda, V, Valle, Maldonado, MI, Villegas, J, Ramirez-Diaz, MI, Ortiz-Alvarado, R, Meza-Carmen, V. Mass spore production of Mucor circinelloides on rice., 3 Biotech, 2021;, 11, 1: 311, DOI: 10.1007/s13205-021-02853-1.
Year 2024, Volume: 8 Issue: 4, 182 - 192, 31.12.2024
https://doi.org/10.30521/jes.1410571

Abstract

Project Number

1936/PKS/ITS/2023

References

  • [1] Abe, JO, Popoola, API, Ajenifuja, E, Popoola, OM. Hydrogen energy, economy and storage: Review and recommendation., Int J Hydrogen Energy, 2019;, 44, 1: 15072–15086, DOI: 10.1016/j.ijhydene.2019.04.068.
  • [2] Vermaak, L, Neomagus, HWJP, Bessarabov, DG. Recent Advances in Membrane-Based Electrochemical Hydrogen Separation: A Review., Membranes (Basel), 2021;, 11, 1: 127, DOI: 10.3390/membranes11020127.
  • [3] Shafiee, S, Topal, E. When will fossil fuel reserves be diminished?., Energy Policy, 2009;, 37, 1: 181–189, DOI: 10.1016/j.enpol.2008.08.016.
  • [4] Bölük, G, Mert, M. Fossil & renewable energy consumption, GHGs (greenhouse gases) and economic growth: Evidence from a panel of EU (European Union) countries., Energy, 2014;, 74, 1: 439–446, DOI: 10.1016/j.energy.2014.07.008.
  • [5] Padder, SA, Khan, R, Rather, RA. Biofuel generations: New insights into challenges and opportunities in their microbe-derived industrial production., Biomass Bioenergy, 2024;, 185, 1: 107220, DOI: 10.1016/j.biombioe.2024.107220.
  • [6] Farobie, O, Hartulistiyoso, E. Palm Oil Biodiesel as a Renewable Energy Resource in Indonesia: Current Status and Challenges., Bioenergy Res, 2022;, 15, 1: 93–111, DOI: 10.1007/s12155-021-10344-7.
  • [7] Badan Pusat Statistik. Statistik Tebu Indonesia 2021. BPS RI, 2021.
  • [8] Yudo, H, Jatmiko, S. ANALISA TEKNIS KEKUATAN MEKANIS MATERIAL KOMPOSIT BERPENGUAT SERAT AMPAS TEBU (BAGGASE) DITINJAU DARI KEKUATAN TARIK DAN IMPAK., Kapal: Jurnal Ilmu Pengetahuan dan Teknologi Kelautan, 2008;, 5, 1: 95–101, DOI: 10.14710/KPL.V5I2.3197.
  • [9] Tyagi, S, Lee, KJ, Mulla, SI, Garg, N, Chae, JC. Production of Bioethanol From Sugarcane Bagasse: Current Approaches and Perspectives., Applied Microbiology and Bioengineering, 2019;, 1: 21–42, DOI: 10.1016/B978-0-12-815407-6.00002-2.
  • [10] Nguyen, HC, Su, CH, Yu, YK, Huong, DTM. Sugarcane bagasse as a novel carbon source for heterotrophic cultivation of oleaginous microalga Schizochytrium sp., Ind Crops Prod, 2018;, 121, 1: 99–105, DOI: 10.1016/J.INDCROP.2018.05.005.
  • [11] Carvalho, AKF, Bento, HBS, Reis, CER, De Castro, HF. Sustainable enzymatic approaches in a fungal lipid biorefinery based in sugarcane bagasse hydrolysate as carbon source., Bioresour Technol, 2019;, 276, 1: 269–275, DOI: 10.1016/J.BIORTECH.2018.12.118.
  • [12] Mu, J, Li, S, Chen, D, Xu, H, Han, F, Feng, B, Li, Y. Enhanced biomass and oil production from sugarcane bagasse hydrolysate (SBH) by heterotrophic oleaginous microalga Chlorella protothecoides., Bioresour Technol, 2015;, 185, 1: 99–105, DOI: 10.1016/J.BIORTECH.2015.02.082.
  • [13] Xavier, MCA, Coradini, ALV, Deckmann, AC, Franco, TT. Lipid production from hemicellulose hydrolysate and acetic acid by Lipomyces starkeyi and the ability of yeast to metabolize inhibitors., Biochem Eng J, 2017;, 118, 1: 11–19, DOI: 10.1016/J.BEJ.2016.11.007.
  • [14] Ananthi, V, Prakash, GS, Chang, SW, Ravindran, B, Nguyen, DD, Vo, DVN, La, DD, Bach, QV, Wong, JWC, Gupta, SK, Selvaraj, A, Arun, A. Enhanced microbial biodiesel production from lignocellulosic hydrolysates using yeast isolates., Fuel, 2019;, 256, 1: 115932, DOI: 10.1016/J.FUEL.2019.115932.
  • [15] Chintagunta, AD, Zuccaro, G, Kumar, M, Kumar, SPJ, Garlapati, VK, Postemsky, PD, Kumar, NSS, Chandel, AK, Gandara, JS. Biodiesel Production From Lignocellulosic Biomass Using Oleaginous Microbes: Prospects for Integrated Biofuel Production., Frontiers in Microbiology, 12. Frontiers Media S.A., Aug. 12, 2021. DOI: 10.3389/fmicb.2021.658284.
  • [16] Kamoun, O, Muralitharan, G, Belghith, H, Gargouri, A, Trigui-Lahiani, H. Suitable carbon sources selection and ranking for biodiesel production by oleaginous Mucor circinelloides using multi-criteria analysis approach., Fuel, 2019;, 257, 1: 116117, DOI: 10.1016/J.FUEL.2019.116117.
  • [17] Niju, S, Swathika, M. Delignification of sugarcane bagasse using pretreatment strategies for bioethanol production., Biocatal Agric Biotechnol, 2019;, 20, 1: 101263, doi: 10.1016/J.BCAB.2019.101263.
  • [18] Zendrato, HM, Masruchin, N, Nikmatin, S, Wistara, NJ. Effective cellulose isolation from torch ginger stem by alkaline hydrogen peroxide – Peracetic acid system., Journal of Industrial and Engineering Chemistry, 2023;, DOI: 10.1016/J.JIEC.2023.10.040.
  • [19] Rezeki Muria, S, Akbar Kemala, Z, Hafiz Hidayat, A, Chairul, Sri Irianti, R. Study on the effect of mixed acid hydrolysis on the glucose production from young coconut husks., Mater Today Proc, 2023;, 87, 1: 376–382, DOI: 10.1016/J.MATPR.2023.04.170.
  • [20] Ben Atitallah, I, Antonopoulou, G, Ntaikou, I, Beobide, AS, Dracopoulos, V, Mechichi, T, Lyberatos, G. A Comparative Study of Various Pretreatment Approaches for Bio-Ethanol Production from Willow Sawdust, Using Co-Cultures and Mono-Cultures of Different Yeast Strains., Molecules 2022, Vol. 27, Page 1344, 2022;, 27, 1: 1344, DOI: 10.3390/MOLECULES27041344.
  • [21] Carvalho, AKF, Bento, HBS, Reis, CER, De Castro, HF. Sustainable enzymatic approaches in a fungal lipid biorefinery based in sugarcane bagasse hydrolysate as carbon source., Bioresour Technol, 2019;, 276, 1: 269–275, DOI: 10.1016/J.BIORTECH.2018.12.118.
  • [22] Berthomieu, C, Hienerwadel, R. Fourier transform infrared (FTIR) spectroscopy., Photosynth Res, 2009;, 101, 1: 157–170, DOI: 10.1007/s11120-009-9439-x.
  • [23] Ahvenainen, P, Kontro, I, Svedström, K. Comparison of sample crystallinity determination methods by X-ray diffraction for challenging cellulose I materials., Cellulose, 2016;, 23, 1: 1073–1086, DOI: 10.1007/S10570-016-0881-6/FIGURES/7.
  • [24] B., Dictionary of Energy, 2015;, 1: 41–81, DOI: 10.1016/B978-0-08-096811-7.50002-0.
  • [25] Ehara, K, Takada, D, Saka, S. GC-MS and IR spectroscopic analyses of the lignin-derived products from softwood and hardwood treated in supercritical water., Journal of Wood Science, 2005;, 51, 1: 256–261, DOI: 10.1007/s10086-004-0653-z.
  • [26] Liu, Y. Y. et al., Reinforced alkali-pretreatment for enhancing enzymatic hydrolysis of sugarcane bagasse., Fuel Processing Technology, 2016;, 143, 1: 1–6, DOI: 10.1016/j.fuproc.2015.11.004.
  • [27] Corrales, RCNR, Mendes, FMT, Perrone, CC, Sant’Anna, C, Souza, W, Abud, Y, Bon, EPPS, Leitao, VF. Structural evaluation of sugar cane bagasse steam pretreated in the presence of CO2 and SO2., Biotechnol Biofuels, 2012;, 5, DOI: 10.1186/1754-6834-5-36.
  • [28] Karlen, D. L. Cellulosic Energy Cropping Systems Editor WILEY SERIES IN RENEWABLE RESOURCES.
  • [29] Refaat, AA. Biofuels from Waste Materials., Comprehensive Renewable Energy, 2012;, 1: 217–261, DOI: 10.1016/B978-0-08-087872-0.00518-7.
  • [30] Kininge, MM, Gogate, PR. Intensification of alkaline delignification of sugarcane bagasse using ultrasound assisted approach., Ultrason Sonochem, 2022;, 82, 1: 105870, DOI: 10.1016/j.ultsonch.2021.105870.
  • [31] Long, J, Li, X, Guo, B, Wang, L, Zhang, N. Catalytic delignification of sugarcane bagasse in the presence of acidic ionic liquids., Catal Today, 2013;, 200, 1: 99–105, DOI: 10.1016/J.CATTOD.2012.08.018.
  • [32] Xu, C, Zhang, J, Zhang, Y, Guo, Y, Xu, H, Liang, C, Wang, Z, Xu, J. Lignin prepared from different alkaline pretreated sugarcane bagasse and its effect on enzymatic hydrolysis., Int J Biol Macromol, 2019;, 141, 1: 484–492, DOI: 10.1016/j.ijbiomac.2019.08.263.
  • [33] Maryana, R, Ma’rifatun, D, Wheni, IA, Rizal, WA. Alkaline Pretreatment on Sugarcane Bagasse for Bioethanol Production., Energy Procedia, 2014;, 47, 1: 250–254, DOI: 10.1016/J.EGYPRO.2014.01.221.
  • [34] Zhao, X, van der Heide, E, Zhang, T, Liu, D. Delignification of sugarcane bagasse with alkali and peracetic acid and characterization of the pulp., Bioresources, 2010;, 5, 1: 1565–1580, DOI: 10.15376/biores.5.3.1565-1580.
  • [35] Bilba, K, Ouensanga, A. Fourier transform infrared spectroscopic study of thermal degradation of sugar cane bagasse., J Anal Appl Pyrolysis, 1996;, 38, 1: 61–73, DOI: 10.1016/S0165-2370(96)00952-7.
  • [36] Ling, R, Wei, W, Jin, Y. Pretreatment of sugarcane bagasse with acid catalyzed ethylene glycol–water to improve the cellulose enzymatic conversion., Bioresour Technol, 2022;, 361, 1: 127723, DOI: 10.1016/j.biortech.2022.127723.
  • [37] Zahoor, Madadi, M, Nazar, M, Shah, SWA, Li, N, Imtiaz, M, Zhong, Z, Zhu, D. Green alkaline fractionation of sugarcane bagasse at cold temperature improves digestibility and delignification without the washing processes and release of hazardous waste., Ind Crops Prod, 2023;, 200, 1: 116815, DOI: 10.1016/j.indcrop.2023.116815.
  • [38] Zhu, Y, Qi, B, Liang, X, Luo, J, Wan, Y. Lewis acid-mediated aqueous glycerol pretreatment of sugarcane bagasse: Pretreatment recycling, one-pot hydrolysis and lignin properties., Renew Energy, 2021;, 178, 1: 1456–1465, DOI: 10.1016/j.renene.2021.07.006.
  • [39] Valladares-Diestra, KK, Vandenberghe, LPS, Torres, LAZ, Nishida, VS, Filho, AZ, Woiciechowski, AL, Soccol, CR. Imidazole green solvent pre-treatment as a strategy for second-generation bioethanol production from sugarcane bagasse., Chemical Engineering Journal, 2021;, 420, 1: 127708, DOI: 10.1016/j.cej.2020.127708.
  • [40] Bartos, A, Anggono, J, Farkas, AE, Kun, D, Soetaredjo, FE, Moczo, J, Antoni, Purwaningsih, H, Pukanszky, B. Alkali treatment of lignocellulosic fibers extracted from sugarcane bagasse: Composition, structure, properties., Polym Test, 2020;, 88, 1: 106549, DOI: 10.1016/j.polymertesting.2020.106549.
  • [41] Escobar, ELN, Suota, MJ, Ramos, LP, Corazza, ML. Combination of green solvents for efficient sugarcane bagasse fractionation., Biomass Bioenergy, 2022;, 161, 1: 106482, DOI: 10.1016/j.biombioe.2022.106482.
  • [42] Wang, B, Qi, J, Xie, M, Wang, X, Xu, J, Yu, Z, Zhao, W, Xiao, Y, Wei, W. Enhancement of sugar release from sugarcane bagasse through NaOH-catalyzed ethylene glycol pretreatment and water-soluble sulfonated lignin., Int J Biol Macromol, 2022;, 221, 1: 38–47, DOI: 10.1016/j.ijbiomac.2022.08.193.
  • [43] Schmatz, AA, Candido, JP, de Angelis, DF, Brienzo, M. Semi-Simultaneous Saccharification and Fermentation Improved by Lignin and Extractives Removal from Sugarcane Bagasse., Fermentation, 2023;, 9, 1: 405, DOI: 10.3390/fermentation9050405.
  • [44] Lu, H, Liu, S, Shi, Y, Chen, Q. Efficient delignification of sugarcane bagasse by Fenton oxidation coupled with ultrasound-assisted NaOH for biotransformation from Agaricus sinodeliciosus var. Chaidam., Chemical Engineering Journal, 2022;, 448, 1: 137719, DOI: 10.1016/j.cej.2022.137719.
  • [45] Seo, YJ, Oh, DS, Lee, JW. Study on the possibility of waste mushroom medium as a biomass resource for biorefinery., Journal of Industrial and Engineering Chemistry, 2013;, 19, 1: 1535–1539, DOI: 10.1016/J.JIEC.2013.01.020.
  • [46] Zhu, L, O’Dwyer, JP, Chang, VS, Granda, CB, Holtzapple, MT. Structural features affecting biomass enzymatic digestibility., Bioresour Technol, 2008;, 99, 1: 3817–3828, DOI: 10.1016/j.biortech.2007.07.033.
  • [47] Dourou, M, Aggeli, D, Papanikolaou, S, Aggelis, G. Critical steps in carbon metabolism affecting lipid accumulation and their regulation in oleaginous microorganisms., Appl Microbiol Biotechnol, 2018;, 102, 1: 2509–2523, DOI: 10.1007/s00253-018-8813-z.
  • [48] Yang, J, Li, S, Kabir Khan, MdA, Garre, V, Vongsangnak, W, Song, Y. Increased Lipid Accumulation in Mucor circinelloides by Overexpression of Mitochondrial Citrate Transporter Genes., Ind Eng Chem Res, 2019;, 58, 1: 2125–2134, DOI: 10.1021/acs.iecr.8b05564.
  • [49] Dourou, M, Mizerakis, P, Papanikolaou, S, Aggelis, G. Storage lipid and polysaccharide metabolism in Yarrowia lipolytica and Umbelopsis isabellina., Appl Microbiol Biotechnol, 2017;, 101, 1: 7213–7226, DOI: 10.1007/s00253-017-8455-6.
  • [50] Fazili, ABA, Shah, Am, Zan, X, Naz, T, Nosheen, S, Nazir, Y, Ullah, S, Zhang, H, Song, Y. Mucor circinelloides: a model organism for oleaginous fungi and its potential applications in bioactive lipid production., Microb Cell Fact, 2022;, 21, 1: 29, DOI: 10.1186/s12934-022-01758-9.
  • [51] Palmonari, A, Cavalini, D, Sniffen, CJ, Fernandes, L, Holder, P, Fagioli, L, Fusaro, I, Biagi, G, Formigoni, A, Mammi, L. Short communication: Characterization of molasses chemical composition., J Dairy Sci, 2020;, 103, 1: 6244–6249, DOI: 10.3168/jds.2019-17644.
  • [52] Lubbehusen, TL, Nielsen, J, McIntyre, M. Characterization of the Mucor circinelloides life cycle by on-line image analysis., J Appl Microbiol, 2003;, 95, 1: 1152–1160, DOI: 10.1046/j.1365-2672.2003.02098.x.
  • [53] Patiño-Medina, J. A, Alejandre-Castaneda, V, Valle, Maldonado, MI, Villegas, J, Ramirez-Diaz, MI, Ortiz-Alvarado, R, Meza-Carmen, V. Mass spore production of Mucor circinelloides on rice., 3 Biotech, 2021;, 11, 1: 311, DOI: 10.1007/s13205-021-02853-1.
There are 53 citations in total.

Details

Primary Language English
Subjects Biomass Energy Systems
Journal Section Research Articles
Authors

Gregory Hope Soegiantoro 0000-0001-5685-1232

Akhmad Faruq Alhikami 0000-0002-1562-3206

Azzah Dyah Pramata 0000-0002-4868-3547

Daffa Hibatullah 0009-0009-7610-3210

Fani Ahmad Refansah 0009-0006-7042-8485

Fernando Wijaya 0009-0004-4101-1360

Satria Rafif Rafidianto 0009-0006-8874-3651

Mutiara Rizki Maulida 0009-0000-7820-9638

Gunawan Nugroho 0000-0001-7032-8210

Nur Laila Hamidah 0000-0003-0777-4095

Project Number 1936/PKS/ITS/2023
Early Pub Date December 30, 2024
Publication Date December 31, 2024
Submission Date December 27, 2023
Acceptance Date December 11, 2024
Published in Issue Year 2024 Volume: 8 Issue: 4

Cite

Vancouver Soegiantoro GH, Alhikami AF, Pramata AD, Hibatullah D, Refansah FA, Wijaya F, Rafidianto SR, Maulida MR, Nugroho G, Hamidah NL. Pretreatment of sugarcane bagasse autoclave via assisted-alkali hydrogen peroxide and enzymatic hydrolysis on mucor circinelloides cultivation. Journal of Energy Systems. 2024;8(4):182-9.

Journal of Energy Systems is the official journal of 

European Conference on Renewable Energy Systems (ECRES8756 and


Electrical and Computer Engineering Research Group (ECERG)  8753


Journal of Energy Systems is licensed under CC BY-NC 4.0