Research Article
BibTex RIS Cite

Performance of conventional and modified solar photovoltaic array configuration under the combined effect of seasonal variation and partial shaded conditions

Year 2025, Volume: 9 Issue: 1, 52 - 67
https://doi.org/10.30521/jes.1523575

Abstract

The energy yield of the photovoltaic (PV) array varies with every season, primarily due to variation in the availability of solar insolation and ambient temperature. Moreover, the energy generation of an installed PV array gets severely impacted by the partial shading conditions (PSCs), which occurs when neighbouring objects or even debris cast shadow on some portion of the array. The combined effect of seasonal variation and partial shading can lead to more pronounced fluctuation and deterioration in the energy yield of the PV array. In this work, the performance of a conventional and modified PV array configuration under the combined effect of seasonal variation and PSC has been investigated. Both the array configurations have been characterized experimentally in real field conditions under uniform and PSCs. The outdoor current-voltage (I-V) data and weather data is used to estimate the seasonal energy yield and DC performance ratio of the arrays under different PSC scenarios. It is found that under unshaded condition, both the PV arrays generate same energy in different seasons. Under PSCs, the modified PV configuration outperforms the conventional one, with a notable improvement in energy generation in all the seasons.

Supporting Institution

National Institute of Solar Energy (Under Ministry of New and Renewable Energy), Gurugram, Haryana, India

References

  • [1] IRENA. *Renewable capacity statistics 2021*. Abu Dhabi: International Renewable Energy Agency; 2021. Available from: https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2021/Apr/IRENA_RE_Capacity_Statistics_2021.pdf.
  • [2] Ameur A, Berrada A, Bouaichi A, Loudiyi K. Long-term performance and degradation analysis of different PV modules under temperate climate. *Renewable Energy*. 2022;188:37-51. doi:10.1016/j.renene.2022.02.025.
  • [3] Blakesley JC, Huld T, Müllejans H, Gracia-Amillo A, Friesen G, Betts TR, Hermann W. Accuracy, cost and sensitivity analysis of PV energy rating. *Solar Energy*. 2020;203:91-100. doi:10.1016/j.solener.2020.03.088.
  • [4] Poddar S, Kay M, Prasad A, Evans JP, Bremner S. Changes in solar resource intermittency and reliability under Australia’s future warmer climate. *Solar Energy*. 2023;266:112039. doi:10.1016/j.solener.2023.112039.
  • [5] Katsumata N, Nakada Y, Minemoto T, Takakura H. Estimation of irradiance and outdoor performance of photovoltaic modules by meteorological data. *Solar Energy Materials and Solar Cells*. 2011;95(1):199-202. doi:10.1016/j.solmat.2010.01.019.
  • [6] Wang H, Muñoz-García MA, Moreda GP, Alonso-García MC. Seasonal performance comparison of three grid connected photovoltaic systems based on different technologies operating under the same conditions. *Solar Energy*. 2017;144:798-807. doi:10.1016/j.solener.2017.02.006.
  • [7] Phinikarides A, Makrides G, Zinsser B, Schubert M, Georghiou GE. Analysis of photovoltaic system performance time series: Seasonality and performance loss. *Renewable Energy*. 2015;77:51-63. doi:10.1016/j.renene.2014.11.091.
  • [8] Vasisht MS, Srinivasan J, Ramasesha SK. Performance of solar photovoltaic installations: Effect of seasonal variations. *Solar Energy*. 2016;131:39-46. doi:10.1016/j.solener.2016.02.013.
  • [9] Sevillano-Bendezú MA, Khenkin M, Nofuentes G, Casa J de la, Ulbrich C, Töfflinger JA. Predictability and interrelations of spectral indicators for PV performance in multiple latitudes and climates. *Solar Energy*. 2023;259:174-187. doi:10.1016/j.solener.2023.04.067.
  • [10] Mustafa RJ, Gomaa MR, Al-Dhaifallah M, Rezk H. Environmental impacts on the performance of solar photovoltaic systems. *Sustainability (Switzerland)*. 2020;12:608. doi:10.3390/su12020608.
  • [11] Kinsey GS, Riedel-Lyngskær NC, Miguel A, Boyd M, Braga M, Shou C, et al. Impact of measured spectrum variation on solar photovoltaic efficiencies worldwide. *Renewable Energy*. 2022;196:995-1016. doi:10.1016/j.renene.2022.07.011.
  • [12] Dag HI, Buker MS. Performance evaluation and degradation assessment of crystalline silicon based photovoltaic rooftop technologies under outdoor conditions. *Renewable Energy*. 2020;156:1292-1300. doi:10.1016/j.renene.2019.11.141.
  • [13] Ul-Abdin Z, Zeman M, Isabella O, Santbergen R. Investigating the annual performance of air-based collectors and novel bi-fluid based PV-thermal system. *Solar Energy*. 2024;276:112687. doi:10.1016/j.solener.2024.112687.
  • [14] Kim C, Beltran L. Solar Constraints and Potential in Urban Residential Buildings. In: *Solar World Congress*; 08-12 November 2015; Daegu, Korea: International Solar Energy Society Conference Proceedings. doi:10.18086/swc.2015.08.03.
  • [15] Calcabrini A, Weegink R, Manganiello P, Zeman M, Isabella O. Simulation study of the electrical yield of various PV module topologies in partially shaded urban scenarios. *Solar Energy*. 2021;225:726-733. doi:10.1016/j.solener.2021.07.061.
  • [16] Agrawal N, Kapoor A, Gupta M. Monthly energy yield assessment of solar photovoltaic system under uniform irradiance and partial shaded condition. *Material Today Proceeding*. 2022;68:2699-2704. doi:10.1016/j.matpr.2022.06.240.
  • [17] Brecl K, Bokalič M, Topič M. Annual energy losses due to partial shading in PV modules with cut wafer-based Si solar cells. *Renewable Energy*. 2021;168:195-203. doi:10.1016/j.renene.2020.12.059.
  • [18] Agrawal N, Bora B, Rai S, Kapoor A, Gupta M. Performance Enhancement by Novel Hybrid PV Array Without and With Bypass Diode Under Partial Shaded Conditions: An Experimental Study. *International Journal of Renewable Energy Research*. 2021;11(4):1880-1891. doi:10.20508/ijrer.v11i4.12392.g8340.
  • [19] Pendem SR, Mikkili S. Modelling and performance assessment of PV array topologies under partial shading conditions to mitigate the mismatching power losses. *Solar Energy*. 2018;160:303-321. doi:10.1016/j.solener.2017.12.010.
  • [20] Bingöl O, Özkaya B. Analysis and comparison of different PV array configurations under partial shading conditions. *Solar Energy*. 2018;160:336-343. doi:10.1016/j.solener.2017.12.004.
  • [21] Bana S, Saini RP. Experimental investigation on power output of different photovoltaic array configurations under uniform and partial shading scenarios. *Energy*. 2017;127:438-453. doi:10.1016/j.energy.2017.03.139.
  • [22] Saeed F, Tauqeer HA, Gelani HE, Yousuf MH, Idrees A. Numerical modeling, simulation and evaluation of conventional and hybrid photovoltaic modules interconnection configurations under partial shading conditions. *EPJ Photovoltaics*. 2022;13:10. doi:10.1051/epjpv/2022004.
  • [23] Agrawal N, Bora B, Kapoor A. Experimental investigations of fault tolerance due to shading in photovoltaic modules with different interconnected solar cell networks. *Solar Energy*. 2020;211:1239-1254. doi:10.1016/j.solener.2020.10.060.
  • [24] Vunnam S, VanithaSri M, RamaKoteswaraRao A. An Optimal Triple-Series Parallel-Ladder Topology for Maximum Power Harvesting Under Partial Shading Conditions. *International Journal of Renewable Energy Research*. 2023;13(2):888-898. doi:10.20508/ijrer.v13i2.13885.g8762.
  • [25] Yadav AS, Mukherjee V. Conventional and advanced PV array configurations to extract maximum power under partial shading conditions: A review. *Renewable Energy*. 2021;178:977-1005. doi:10.1016/j.renene.2021.06.029.
  • [26] Fathy A, Yousri D, Sudhakar Babu T, Rezk H. Triple X Sudoku reconfiguration for alleviating shading effect on total-cross-tied PV array. *Renewable Energy*. 2023;204:593-604. doi:10.1016/j.renene.2023.01.046.
  • [27] Horoufiany M, Ghandehari R. Optimization of the Sudoku based reconfiguration technique for PV arrays power enhancement under mutual shading conditions. *Solar Energy*. 2018;159:1037-1046. doi:10.1016/j.solener.2017.05.059.
  • [28] Nihanth MSS, Ram JP, Pillai DS, Ghias AMY, Garg MA, Rajasekar N. Enhanced power production in PV arrays using a new skyscraper puzzle based one-time reconfiguration procedure under partial shade conditions (PSCs). *Solar Energy*. 2019;194:209-224. doi:10.1016/j.solener.2019.10.020.
  • [29] Osmani K, Haddad A, Jaber H, Lemenand T, Castanier B, Ramadan M. Mitigating the effects of partial shading on PV system’s performance through PV array reconfiguration: A review. *Thermal Science and Engineering Progress*. 2022;31:101280. doi:10.1016/j.tsep.2022.101280.
  • [30] Mishra VL, Chauhan YK, Verma KS. Attenuation of shading loss using a novel solar array reconfigured topology under partial shading conditions. *Solar Energy*. 2024;274:112552. doi:10.1016/j.solener.2024.112552.
  • [31] Agrawal N, Kapoor A, Gupta M. Estimation and comparison of annual energy yield of total cross tied-in-series and conventional PV array configuration under unshaded and commonly occurring partial shading conditions in urban areas. *International Journal of Renewable Energy Research*. 2023;13(1):463-473. doi:10.20508/ijrer.v13i1.13695.g8704.
  • [32] Tamizhmani G, Paghasian K, Kuitche J, Gupta M, Sivasubramanian VG. *Solar ABCs Policy Recommendations: Module Power Rating Requirements*. United States: Solar America Boards for Codes and Standards; 2011. Available from: http://www.solarabcs.org/powerratingpolicy.
  • [33] King DL, Boyson WE, Kratochvil JA. *Photovoltaic array performance model*. United States: Sandia National Laboratories; 2004. doi:10.2172/919131.
  • [34] Durusoy B, Ozden T, Akinoglu BG. Solar irradiation on the rear surface of bifacial solar modules: a modeling approach. *Scientific Reports*. 2020;10:13300. doi:10.1038/s41598-020-70235-3.
  • [35] IEC 61724: *Photovoltaic system performance monitoring - Guidelines for measurement, data exchange and analysis*. Switzerland: International Electrotechnical Commission; 1998.
  • [36] Dierauf T, Growitz A, Kurtz S, Cruz JLB, Riley E, Hansen C. *Weather-Corrected Performance Ratio*. United States: National Renewable Energy Laboratory; 2013. Available from: https://www.osti.gov/servlets/purl/1078057.
Year 2025, Volume: 9 Issue: 1, 52 - 67
https://doi.org/10.30521/jes.1523575

Abstract

References

  • [1] IRENA. *Renewable capacity statistics 2021*. Abu Dhabi: International Renewable Energy Agency; 2021. Available from: https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2021/Apr/IRENA_RE_Capacity_Statistics_2021.pdf.
  • [2] Ameur A, Berrada A, Bouaichi A, Loudiyi K. Long-term performance and degradation analysis of different PV modules under temperate climate. *Renewable Energy*. 2022;188:37-51. doi:10.1016/j.renene.2022.02.025.
  • [3] Blakesley JC, Huld T, Müllejans H, Gracia-Amillo A, Friesen G, Betts TR, Hermann W. Accuracy, cost and sensitivity analysis of PV energy rating. *Solar Energy*. 2020;203:91-100. doi:10.1016/j.solener.2020.03.088.
  • [4] Poddar S, Kay M, Prasad A, Evans JP, Bremner S. Changes in solar resource intermittency and reliability under Australia’s future warmer climate. *Solar Energy*. 2023;266:112039. doi:10.1016/j.solener.2023.112039.
  • [5] Katsumata N, Nakada Y, Minemoto T, Takakura H. Estimation of irradiance and outdoor performance of photovoltaic modules by meteorological data. *Solar Energy Materials and Solar Cells*. 2011;95(1):199-202. doi:10.1016/j.solmat.2010.01.019.
  • [6] Wang H, Muñoz-García MA, Moreda GP, Alonso-García MC. Seasonal performance comparison of three grid connected photovoltaic systems based on different technologies operating under the same conditions. *Solar Energy*. 2017;144:798-807. doi:10.1016/j.solener.2017.02.006.
  • [7] Phinikarides A, Makrides G, Zinsser B, Schubert M, Georghiou GE. Analysis of photovoltaic system performance time series: Seasonality and performance loss. *Renewable Energy*. 2015;77:51-63. doi:10.1016/j.renene.2014.11.091.
  • [8] Vasisht MS, Srinivasan J, Ramasesha SK. Performance of solar photovoltaic installations: Effect of seasonal variations. *Solar Energy*. 2016;131:39-46. doi:10.1016/j.solener.2016.02.013.
  • [9] Sevillano-Bendezú MA, Khenkin M, Nofuentes G, Casa J de la, Ulbrich C, Töfflinger JA. Predictability and interrelations of spectral indicators for PV performance in multiple latitudes and climates. *Solar Energy*. 2023;259:174-187. doi:10.1016/j.solener.2023.04.067.
  • [10] Mustafa RJ, Gomaa MR, Al-Dhaifallah M, Rezk H. Environmental impacts on the performance of solar photovoltaic systems. *Sustainability (Switzerland)*. 2020;12:608. doi:10.3390/su12020608.
  • [11] Kinsey GS, Riedel-Lyngskær NC, Miguel A, Boyd M, Braga M, Shou C, et al. Impact of measured spectrum variation on solar photovoltaic efficiencies worldwide. *Renewable Energy*. 2022;196:995-1016. doi:10.1016/j.renene.2022.07.011.
  • [12] Dag HI, Buker MS. Performance evaluation and degradation assessment of crystalline silicon based photovoltaic rooftop technologies under outdoor conditions. *Renewable Energy*. 2020;156:1292-1300. doi:10.1016/j.renene.2019.11.141.
  • [13] Ul-Abdin Z, Zeman M, Isabella O, Santbergen R. Investigating the annual performance of air-based collectors and novel bi-fluid based PV-thermal system. *Solar Energy*. 2024;276:112687. doi:10.1016/j.solener.2024.112687.
  • [14] Kim C, Beltran L. Solar Constraints and Potential in Urban Residential Buildings. In: *Solar World Congress*; 08-12 November 2015; Daegu, Korea: International Solar Energy Society Conference Proceedings. doi:10.18086/swc.2015.08.03.
  • [15] Calcabrini A, Weegink R, Manganiello P, Zeman M, Isabella O. Simulation study of the electrical yield of various PV module topologies in partially shaded urban scenarios. *Solar Energy*. 2021;225:726-733. doi:10.1016/j.solener.2021.07.061.
  • [16] Agrawal N, Kapoor A, Gupta M. Monthly energy yield assessment of solar photovoltaic system under uniform irradiance and partial shaded condition. *Material Today Proceeding*. 2022;68:2699-2704. doi:10.1016/j.matpr.2022.06.240.
  • [17] Brecl K, Bokalič M, Topič M. Annual energy losses due to partial shading in PV modules with cut wafer-based Si solar cells. *Renewable Energy*. 2021;168:195-203. doi:10.1016/j.renene.2020.12.059.
  • [18] Agrawal N, Bora B, Rai S, Kapoor A, Gupta M. Performance Enhancement by Novel Hybrid PV Array Without and With Bypass Diode Under Partial Shaded Conditions: An Experimental Study. *International Journal of Renewable Energy Research*. 2021;11(4):1880-1891. doi:10.20508/ijrer.v11i4.12392.g8340.
  • [19] Pendem SR, Mikkili S. Modelling and performance assessment of PV array topologies under partial shading conditions to mitigate the mismatching power losses. *Solar Energy*. 2018;160:303-321. doi:10.1016/j.solener.2017.12.010.
  • [20] Bingöl O, Özkaya B. Analysis and comparison of different PV array configurations under partial shading conditions. *Solar Energy*. 2018;160:336-343. doi:10.1016/j.solener.2017.12.004.
  • [21] Bana S, Saini RP. Experimental investigation on power output of different photovoltaic array configurations under uniform and partial shading scenarios. *Energy*. 2017;127:438-453. doi:10.1016/j.energy.2017.03.139.
  • [22] Saeed F, Tauqeer HA, Gelani HE, Yousuf MH, Idrees A. Numerical modeling, simulation and evaluation of conventional and hybrid photovoltaic modules interconnection configurations under partial shading conditions. *EPJ Photovoltaics*. 2022;13:10. doi:10.1051/epjpv/2022004.
  • [23] Agrawal N, Bora B, Kapoor A. Experimental investigations of fault tolerance due to shading in photovoltaic modules with different interconnected solar cell networks. *Solar Energy*. 2020;211:1239-1254. doi:10.1016/j.solener.2020.10.060.
  • [24] Vunnam S, VanithaSri M, RamaKoteswaraRao A. An Optimal Triple-Series Parallel-Ladder Topology for Maximum Power Harvesting Under Partial Shading Conditions. *International Journal of Renewable Energy Research*. 2023;13(2):888-898. doi:10.20508/ijrer.v13i2.13885.g8762.
  • [25] Yadav AS, Mukherjee V. Conventional and advanced PV array configurations to extract maximum power under partial shading conditions: A review. *Renewable Energy*. 2021;178:977-1005. doi:10.1016/j.renene.2021.06.029.
  • [26] Fathy A, Yousri D, Sudhakar Babu T, Rezk H. Triple X Sudoku reconfiguration for alleviating shading effect on total-cross-tied PV array. *Renewable Energy*. 2023;204:593-604. doi:10.1016/j.renene.2023.01.046.
  • [27] Horoufiany M, Ghandehari R. Optimization of the Sudoku based reconfiguration technique for PV arrays power enhancement under mutual shading conditions. *Solar Energy*. 2018;159:1037-1046. doi:10.1016/j.solener.2017.05.059.
  • [28] Nihanth MSS, Ram JP, Pillai DS, Ghias AMY, Garg MA, Rajasekar N. Enhanced power production in PV arrays using a new skyscraper puzzle based one-time reconfiguration procedure under partial shade conditions (PSCs). *Solar Energy*. 2019;194:209-224. doi:10.1016/j.solener.2019.10.020.
  • [29] Osmani K, Haddad A, Jaber H, Lemenand T, Castanier B, Ramadan M. Mitigating the effects of partial shading on PV system’s performance through PV array reconfiguration: A review. *Thermal Science and Engineering Progress*. 2022;31:101280. doi:10.1016/j.tsep.2022.101280.
  • [30] Mishra VL, Chauhan YK, Verma KS. Attenuation of shading loss using a novel solar array reconfigured topology under partial shading conditions. *Solar Energy*. 2024;274:112552. doi:10.1016/j.solener.2024.112552.
  • [31] Agrawal N, Kapoor A, Gupta M. Estimation and comparison of annual energy yield of total cross tied-in-series and conventional PV array configuration under unshaded and commonly occurring partial shading conditions in urban areas. *International Journal of Renewable Energy Research*. 2023;13(1):463-473. doi:10.20508/ijrer.v13i1.13695.g8704.
  • [32] Tamizhmani G, Paghasian K, Kuitche J, Gupta M, Sivasubramanian VG. *Solar ABCs Policy Recommendations: Module Power Rating Requirements*. United States: Solar America Boards for Codes and Standards; 2011. Available from: http://www.solarabcs.org/powerratingpolicy.
  • [33] King DL, Boyson WE, Kratochvil JA. *Photovoltaic array performance model*. United States: Sandia National Laboratories; 2004. doi:10.2172/919131.
  • [34] Durusoy B, Ozden T, Akinoglu BG. Solar irradiation on the rear surface of bifacial solar modules: a modeling approach. *Scientific Reports*. 2020;10:13300. doi:10.1038/s41598-020-70235-3.
  • [35] IEC 61724: *Photovoltaic system performance monitoring - Guidelines for measurement, data exchange and analysis*. Switzerland: International Electrotechnical Commission; 1998.
  • [36] Dierauf T, Growitz A, Kurtz S, Cruz JLB, Riley E, Hansen C. *Weather-Corrected Performance Ratio*. United States: National Renewable Energy Laboratory; 2013. Available from: https://www.osti.gov/servlets/purl/1078057.
There are 36 citations in total.

Details

Primary Language English
Subjects Solar Energy Systems
Journal Section Research Articles
Authors

Niti Agrawal 0000-0003-4256-7577

Early Pub Date March 15, 2025
Publication Date
Submission Date July 28, 2024
Acceptance Date January 23, 2025
Published in Issue Year 2025 Volume: 9 Issue: 1

Cite

Vancouver Agrawal N. Performance of conventional and modified solar photovoltaic array configuration under the combined effect of seasonal variation and partial shaded conditions. Journal of Energy Systems. 2025;9(1):52-67.

Journal of Energy Systems is the official journal of 

European Conference on Renewable Energy Systems (ECRES8756 and


Electrical and Computer Engineering Research Group (ECERG)  8753


Journal of Energy Systems is licensed under CC BY-NC 4.0