Qualitative and quantitative analysis of ultra-efficiency projects: Commonalities, differences, and lessons learned
Year 2025,
Volume: 9 Issue: 1, 68 - 84
David Koch
,
Patrick Balve
,
Jan-niklas Gerdes
,
Michael Hertwig
,
Markus Kröll
,
Joachim Lentes
Abstract
Industrial companies must become more sustainable and environmentally friendly to cope with rising energy and resource costs and regulatory requirements. One approach achieving these goals is the concept of ultra-efficiency, which has been developed and promoted by Fraunhofer in recent years. In many cases, measures to increase sustainability are more effective when neighboring companies work together than when they act individually. This is why the concept of ultra-efficiency has been extended from a single factory to multiple factories in industrial zones and, more recently, to agriculture in mixed-use urban districts. Understanding the benefits and identifying barriers and best practices for fostering such collaboration is important for translating scientific concepts into practice. Therefore, three completed projects are selected and qualitatively and quantitatively analyzed in terms of their similarities and differences. Based on the analyses, a list of eight lessons is highlighted to assist in its quest for greater sustainability: Project complexity increases with diverse stakeholders. Public engagement and demonstrators are key to communication. A strong lead entity is essential early on. Decision maker engagement, clear benefits, data sharing, and independent operator models are key to achieving viable synergies. Long-term planning and infrastructure investment are essential to achieving sustainability goals.
Supporting Institution
Ministry of the Environment, Climate Protection and the Energy Sector Baden-Württemberg grant numbers L75 21107, BWDU20110, L75 22123, L75 22124
References
- [1] United Nations, Department of Economic and Social Affairs, Population Division. World Population Prospects: The 2012 Revision, Highlights and Advance Tables. New York: United Nations; 2012.
- [2] United Nations Department of Economic and Social Affairs, Population Division. World Population Prospects 2024: Summary of Results (UN DESA/POP/2024/TR/NO. 9). New York: United Nations; 2024.
- [3] Dahl Andersen A, Marin A. Learning and innovation in natural resource intensive industries. Innovation and Development. 2015. doi:10.13140/RG.2.1.1904.0481.
- [4] United Nations. Sustainable production and consumption. 2023. Available from: https://www.un.org/sustainabledevelopment/sustainable-consumption-production/. Accessed: 26 July 2024.
- [5] Global Footprint Network. Ecological footprint data. Available from: https://data.footprintnetwork.org/. Accessed: 29 July 2024.
- [6] WU Vienna. Material flows by material group, 1970-2019. Visualisation based upon the UN IRP Global Material Flows Database. Available from: materialflows.net/visualisation-centre. Accessed: 31 October 2023.
- [7] Lentes J, Mandel J, Schliessmann U, Blach R, Hertwig M. Competitive and sustainable manufacturing by means of ultra-efficient factories in urban surroundings. International Journal of Production Research. 2017;55(2):480-491. doi:10.1080/00207543.2016.1189106.
- [8] Mandel J, Sauer A. Die Ultraeffizienzfabrik: Ziele – Konzept – Methoden. Ludwigsburg: LOG_X Verlag; 2020.
- [9] Kuhlmann T, Sauer A. Ultra-Efficiency Factory - Framework and Holistic Approach to Increase and Evaluate Efficiency and Sustainability. Advanced Materials Research. 2016;1140:481-488. doi:10.4028/www.scientific.net/AMR.1140.481.
- [10] Lentes J, Mandel J, Schliessmann U. Competitive and sustainable manufacturing by means of ultra-efficient factories in urban surroundings. International Conference on Production Research. 2015;23. doi:10.1080/00207543.2016.1189106.
- [11] Sheehan E, Braun AT, Kuhlmann T, Sauer A. Improving Material Efficiency for Ultra-efficient Factories in Closed-loop Value Networks. Procedia CIRP. 2016;40:455-462. doi:10.1016/j.procir.2016.01.096.
- [12] Miehe R, Stender S, Hessberger N, Mandel J, Sauer A. Improving Manufacturing Systems with Regard to the Concept of Ultra-Efficiency. Advances in Manufacturing Technology XXXI. 2017:321-326. doi:10.3233/978-1-61499-792-4-321.
- [13] Waltersmann L, Kiemel S, Amann Y, Sauer A. Defining sector-specific guiding principles for initiating sustainability within companies. Procedia CIRP. 2019;81:1142-1147. doi:10.1016/j.procir.2019.03.282.
- [14] Waltersmann L, Kiemel S, Bogdanov I, Lettgen J, Miehe R, Sauer A, Mandel J. Benchmarking Holistic Optimization Potentials in the Manufacturing Industry – A Concept to Derive Specific Sustainability Recommendations for Companies. Procedia Manufacturing. 2019;39:685-694. doi:10.1016/j.promfg.2020.01.445.
- [15] Schutzbach M, Full J, Kiemel S, Waltersmann L, Sielaff L, Miehe R, Sauer A. Principles and Design Strategies for Ultra-Efficient Production Systems in the Process Industry. Chemie Ingenieur Technik. 2021;93(11):1781-1791. doi:10.1002/cite.202100062.
- [16] Schutzbach M, Kögel A, Kiemel S, Miehe R, Sauer A. Principles of Management Systems for Positive Impact Factories. Sustainability. 2022;14(24):16709. doi:10.3390/su142416709.
- [17] Sielaff L, Waltersmann L, Lucke D, Sauer A. Machine Failures’ Consequences – A Classification Model Considering Ultra-Efficiency Criteria. Procedia CIRP. 2023;118:982-986. doi:10.1016/j.procir.2023.06.169.
- [18] Singh S, Hertwig M, Lentes J. Economic Impact of Ultraefficient Urban Manufacturing. In: Vinod Kumar TM, editor. Smart Economy in Smart Cities: International Collaborative Research. Singapore: Springer Singapore; 2017. p. 273-293. doi:10.1007/978-981-10-1610-3_12.
- [19] Lentes J, Hertwig M. Towards Ultra-Efficient Industrial Areas. Procedia Manufacturing. 2019;39:804-813. doi:10.1016/j.promfg.2020.01.426.
- [20] Hertwig M, Bogdanov I, Beckett M, Waltersmann L, Lentes J. Symbiotic loss-free industrial production in ultra-efficient urban industrial parks. Procedia CIRP. 2021;98:637-642. doi:10.1016/j.procir.2021.01.167.
- [21] Chertow MR. Industrial Symbiosis: Literature and Taxonomy. Annual Review of Energy and the Environment. 2000;25:313-337. doi:10.1146/annurev.energy.25.1.313.
- [22] Ehrenfeld J, Chertow MR. Industrial Symbiosis: the legacy of Kalundborg. In: Ayres RU, Ayres LW, editors. A Handbook of Industrial Ecology. Cheltenham: Edward Elgar Publishing; 2002. p. 334-348. doi:10.4337/9781843765479.00038.
- [23] Directive 2010/75/EU of the European Parliament and of the Council of 24 November 2010 on industrial emissions (integrated pollution prevention and control).
- [24] ISO 6385:2016: Ergonomics principles in the design of work systems. Geneva: International Organization for Standardization; 2016.
- [25] Freitag J. Abschlussbericht des Verbundprojektes UltraELab. Karlsruhe: Landesanstalt für Umwelt Baden-Württemberg; 2022.
- [26] Lentes J, Hertwig M. Towards Ultra-Efficient Industrial Areas. Procedia Manufacturing. 2019;39:804-813. doi:10.1016/j.promfg.2020.01.426.
- [27] Hertwig M, Zimmermann N, Lentes J. Method for development of sustainable relations of manufacturing companies in industrial estates. International Conference on Production Research. 2017;24:715-720. doi:10.12783/dtetr/icpr2017/17697.
- [28] Bogdanov I, Hertwig M, Beckett M, Waltersmann L. Ultraeffizienzfabrik: Symbiotisch-verlustfreie Produktion im urbanen Umfeld; Arbeitspaket 3.4: Ausarbeitung von Anforderungsprofilen an Ultraeffizienzfabriken zum Aufbau stadtnaher Industriegebiete. Stuttgart: Fraunhofer-Institut für Arbeitswirtschaft und Organisation; 2020.
- [29] Hertwig M. Upgrading of Industrial Parks – Symbiotic Loss-Free Industrial Production in Ultra-Efficient Urban Industrial Parks. Trent: Sino-German Workshop on Circular Economy; 2021. doi:10.24406/publica-fhg-413457.
- [30] Hristov I, Chirico A. The Role of Sustainability Key Performance Indicators (KPIs) in Implementing Sustainable Strategies. Sustainability. 2019;11:5742. doi:10.3390/su11205742.
- [31] Srinvias AS, Donald AD, Sameena M, Rekha K, Srihith ID. Unlocking the Power of Matlab: A Comprehensive Survey. International Journal of Advanced Research in Science, Communication and Technology (IJARSCT). 2023;3(1):20-31. doi:10.48175/IJARSCT-9005.
- [32] Ouyang M. Review on modeling and simulation of interdependent critical infrastructure systems. Reliability Engineering and System Safety. 2014;121:43-60. doi:10.1016/j.ress.2013.06.040.
- [33] Gerdes J, Munder M, Sauer A. Evaluation of technical and economic potential of waste heat distribution networks in industrial sites. 3rd International Conference on Power, Energy and Electrical Engineering (PEEE). 2022;3:219-226. doi:10.1016/j.egyr.2022.12.112.
- [34] IBA’27. Internationale Bauausstellung 2027 StadtRegion Stuttgart. Available from: https://www.iba27.de/en/knowledge/the-iba27/. Accessed: 23 October 2023.
- [35] Fellbach. Handlungsfelder, Website of the City of Fellbach regarding the IBA’27 Project. Available from: https://iba.fellbach.de/de/Handlungsfelder-Projekte. Accessed: 07 July 2023.
- [36] Dilger U. Impuls zur Gebietskonferenz im IBA’27-Projekt “Manufacturing meets Agriculture” at 14.02.2023. Available from: https://iba.fellbach.de/1032?project_id=31. Accessed: 26 October 2023.
- [37] Johnson K. A Long-Term Strategy Suggestion for Renewable Energy Success. 12th European Conference on Renewable Energy Systems. 16-17 May 2024;12:135-140. ISBN: 978-605-70842-3-1.
- [38] Landesanstalt für Umwelt Baden-Württemberg (LUBW). Solar radiation on roof areas. Available from: http://www.energieatlas-bw.de/sonne/dachflachen/solarpotenzial-auf-dachflachen. Accessed: 16 July 2024.
- [39] Sado K, Ali I, Hadi L, Sado S. Power loss calculation of Photovoltaics using Python. Computers and Informatics. 2021;1(2):74-82.
- [40] Deutscher Wetterdienst (DWD). Weather data Germany. Available from: https://www.dwd.de/DE/leistungen/klimadatendeutschland/mittelwerte/nieder_8110_fest_html.html?view=nasPublication&nn=16102. Accessed: 16 July 2024.
- [41] Stadtwerke Fellbach (SWF). Wasserpreise. Available from: https://www.stadtwerke-fellbach.de/de/Wasser/Wasserpreise/Wasserpreise/Tarifblatt-Wasser-2023-mit-AVB-und-ergaenzenden-Bedingungenpdf.pdf. Accessed: 16 July 2024.
Year 2025,
Volume: 9 Issue: 1, 68 - 84
David Koch
,
Patrick Balve
,
Jan-niklas Gerdes
,
Michael Hertwig
,
Markus Kröll
,
Joachim Lentes
References
- [1] United Nations, Department of Economic and Social Affairs, Population Division. World Population Prospects: The 2012 Revision, Highlights and Advance Tables. New York: United Nations; 2012.
- [2] United Nations Department of Economic and Social Affairs, Population Division. World Population Prospects 2024: Summary of Results (UN DESA/POP/2024/TR/NO. 9). New York: United Nations; 2024.
- [3] Dahl Andersen A, Marin A. Learning and innovation in natural resource intensive industries. Innovation and Development. 2015. doi:10.13140/RG.2.1.1904.0481.
- [4] United Nations. Sustainable production and consumption. 2023. Available from: https://www.un.org/sustainabledevelopment/sustainable-consumption-production/. Accessed: 26 July 2024.
- [5] Global Footprint Network. Ecological footprint data. Available from: https://data.footprintnetwork.org/. Accessed: 29 July 2024.
- [6] WU Vienna. Material flows by material group, 1970-2019. Visualisation based upon the UN IRP Global Material Flows Database. Available from: materialflows.net/visualisation-centre. Accessed: 31 October 2023.
- [7] Lentes J, Mandel J, Schliessmann U, Blach R, Hertwig M. Competitive and sustainable manufacturing by means of ultra-efficient factories in urban surroundings. International Journal of Production Research. 2017;55(2):480-491. doi:10.1080/00207543.2016.1189106.
- [8] Mandel J, Sauer A. Die Ultraeffizienzfabrik: Ziele – Konzept – Methoden. Ludwigsburg: LOG_X Verlag; 2020.
- [9] Kuhlmann T, Sauer A. Ultra-Efficiency Factory - Framework and Holistic Approach to Increase and Evaluate Efficiency and Sustainability. Advanced Materials Research. 2016;1140:481-488. doi:10.4028/www.scientific.net/AMR.1140.481.
- [10] Lentes J, Mandel J, Schliessmann U. Competitive and sustainable manufacturing by means of ultra-efficient factories in urban surroundings. International Conference on Production Research. 2015;23. doi:10.1080/00207543.2016.1189106.
- [11] Sheehan E, Braun AT, Kuhlmann T, Sauer A. Improving Material Efficiency for Ultra-efficient Factories in Closed-loop Value Networks. Procedia CIRP. 2016;40:455-462. doi:10.1016/j.procir.2016.01.096.
- [12] Miehe R, Stender S, Hessberger N, Mandel J, Sauer A. Improving Manufacturing Systems with Regard to the Concept of Ultra-Efficiency. Advances in Manufacturing Technology XXXI. 2017:321-326. doi:10.3233/978-1-61499-792-4-321.
- [13] Waltersmann L, Kiemel S, Amann Y, Sauer A. Defining sector-specific guiding principles for initiating sustainability within companies. Procedia CIRP. 2019;81:1142-1147. doi:10.1016/j.procir.2019.03.282.
- [14] Waltersmann L, Kiemel S, Bogdanov I, Lettgen J, Miehe R, Sauer A, Mandel J. Benchmarking Holistic Optimization Potentials in the Manufacturing Industry – A Concept to Derive Specific Sustainability Recommendations for Companies. Procedia Manufacturing. 2019;39:685-694. doi:10.1016/j.promfg.2020.01.445.
- [15] Schutzbach M, Full J, Kiemel S, Waltersmann L, Sielaff L, Miehe R, Sauer A. Principles and Design Strategies for Ultra-Efficient Production Systems in the Process Industry. Chemie Ingenieur Technik. 2021;93(11):1781-1791. doi:10.1002/cite.202100062.
- [16] Schutzbach M, Kögel A, Kiemel S, Miehe R, Sauer A. Principles of Management Systems for Positive Impact Factories. Sustainability. 2022;14(24):16709. doi:10.3390/su142416709.
- [17] Sielaff L, Waltersmann L, Lucke D, Sauer A. Machine Failures’ Consequences – A Classification Model Considering Ultra-Efficiency Criteria. Procedia CIRP. 2023;118:982-986. doi:10.1016/j.procir.2023.06.169.
- [18] Singh S, Hertwig M, Lentes J. Economic Impact of Ultraefficient Urban Manufacturing. In: Vinod Kumar TM, editor. Smart Economy in Smart Cities: International Collaborative Research. Singapore: Springer Singapore; 2017. p. 273-293. doi:10.1007/978-981-10-1610-3_12.
- [19] Lentes J, Hertwig M. Towards Ultra-Efficient Industrial Areas. Procedia Manufacturing. 2019;39:804-813. doi:10.1016/j.promfg.2020.01.426.
- [20] Hertwig M, Bogdanov I, Beckett M, Waltersmann L, Lentes J. Symbiotic loss-free industrial production in ultra-efficient urban industrial parks. Procedia CIRP. 2021;98:637-642. doi:10.1016/j.procir.2021.01.167.
- [21] Chertow MR. Industrial Symbiosis: Literature and Taxonomy. Annual Review of Energy and the Environment. 2000;25:313-337. doi:10.1146/annurev.energy.25.1.313.
- [22] Ehrenfeld J, Chertow MR. Industrial Symbiosis: the legacy of Kalundborg. In: Ayres RU, Ayres LW, editors. A Handbook of Industrial Ecology. Cheltenham: Edward Elgar Publishing; 2002. p. 334-348. doi:10.4337/9781843765479.00038.
- [23] Directive 2010/75/EU of the European Parliament and of the Council of 24 November 2010 on industrial emissions (integrated pollution prevention and control).
- [24] ISO 6385:2016: Ergonomics principles in the design of work systems. Geneva: International Organization for Standardization; 2016.
- [25] Freitag J. Abschlussbericht des Verbundprojektes UltraELab. Karlsruhe: Landesanstalt für Umwelt Baden-Württemberg; 2022.
- [26] Lentes J, Hertwig M. Towards Ultra-Efficient Industrial Areas. Procedia Manufacturing. 2019;39:804-813. doi:10.1016/j.promfg.2020.01.426.
- [27] Hertwig M, Zimmermann N, Lentes J. Method for development of sustainable relations of manufacturing companies in industrial estates. International Conference on Production Research. 2017;24:715-720. doi:10.12783/dtetr/icpr2017/17697.
- [28] Bogdanov I, Hertwig M, Beckett M, Waltersmann L. Ultraeffizienzfabrik: Symbiotisch-verlustfreie Produktion im urbanen Umfeld; Arbeitspaket 3.4: Ausarbeitung von Anforderungsprofilen an Ultraeffizienzfabriken zum Aufbau stadtnaher Industriegebiete. Stuttgart: Fraunhofer-Institut für Arbeitswirtschaft und Organisation; 2020.
- [29] Hertwig M. Upgrading of Industrial Parks – Symbiotic Loss-Free Industrial Production in Ultra-Efficient Urban Industrial Parks. Trent: Sino-German Workshop on Circular Economy; 2021. doi:10.24406/publica-fhg-413457.
- [30] Hristov I, Chirico A. The Role of Sustainability Key Performance Indicators (KPIs) in Implementing Sustainable Strategies. Sustainability. 2019;11:5742. doi:10.3390/su11205742.
- [31] Srinvias AS, Donald AD, Sameena M, Rekha K, Srihith ID. Unlocking the Power of Matlab: A Comprehensive Survey. International Journal of Advanced Research in Science, Communication and Technology (IJARSCT). 2023;3(1):20-31. doi:10.48175/IJARSCT-9005.
- [32] Ouyang M. Review on modeling and simulation of interdependent critical infrastructure systems. Reliability Engineering and System Safety. 2014;121:43-60. doi:10.1016/j.ress.2013.06.040.
- [33] Gerdes J, Munder M, Sauer A. Evaluation of technical and economic potential of waste heat distribution networks in industrial sites. 3rd International Conference on Power, Energy and Electrical Engineering (PEEE). 2022;3:219-226. doi:10.1016/j.egyr.2022.12.112.
- [34] IBA’27. Internationale Bauausstellung 2027 StadtRegion Stuttgart. Available from: https://www.iba27.de/en/knowledge/the-iba27/. Accessed: 23 October 2023.
- [35] Fellbach. Handlungsfelder, Website of the City of Fellbach regarding the IBA’27 Project. Available from: https://iba.fellbach.de/de/Handlungsfelder-Projekte. Accessed: 07 July 2023.
- [36] Dilger U. Impuls zur Gebietskonferenz im IBA’27-Projekt “Manufacturing meets Agriculture” at 14.02.2023. Available from: https://iba.fellbach.de/1032?project_id=31. Accessed: 26 October 2023.
- [37] Johnson K. A Long-Term Strategy Suggestion for Renewable Energy Success. 12th European Conference on Renewable Energy Systems. 16-17 May 2024;12:135-140. ISBN: 978-605-70842-3-1.
- [38] Landesanstalt für Umwelt Baden-Württemberg (LUBW). Solar radiation on roof areas. Available from: http://www.energieatlas-bw.de/sonne/dachflachen/solarpotenzial-auf-dachflachen. Accessed: 16 July 2024.
- [39] Sado K, Ali I, Hadi L, Sado S. Power loss calculation of Photovoltaics using Python. Computers and Informatics. 2021;1(2):74-82.
- [40] Deutscher Wetterdienst (DWD). Weather data Germany. Available from: https://www.dwd.de/DE/leistungen/klimadatendeutschland/mittelwerte/nieder_8110_fest_html.html?view=nasPublication&nn=16102. Accessed: 16 July 2024.
- [41] Stadtwerke Fellbach (SWF). Wasserpreise. Available from: https://www.stadtwerke-fellbach.de/de/Wasser/Wasserpreise/Wasserpreise/Tarifblatt-Wasser-2023-mit-AVB-und-ergaenzenden-Bedingungenpdf.pdf. Accessed: 16 July 2024.