Review
BibTex RIS Cite

Forecasting electricity demand in Türkiye: A comprehensive review of methods, determinants, and policy implications

Year 2025, Volume: 9 Issue: 1, 132 - 158
https://doi.org/10.30521/jes.1549293

Abstract

This review examines the methods, determinants, and forecasting horizons used in electricity demand forecasting in Türkiye. The study investigates how Türkiye's electricity demand is influenced by economic, climatic, socio-demographic, and technological factors, and explores the evolving landscape of forecasting techniques, from traditional statistical models to advanced machine learning and hybrid approaches. The research addresses three key questions: The significant determinants of electricity demand in Türkiye, the most effective forecasting methods, and the application of these insights to improve energy planning and policy development. Through a systematic analysis of peer-reviewed literature, official reports, and case studies, the study reveals the complex interplay of factors affecting electricity demand and the increasing sophistication of forecasting methodologies. Economic growth, industrial production, climate change, urbanization, and technological advancements emerge as primary drivers of demand, while artificial neural networks and hybrid models demonstrate superior forecasting capabilities. The study highlights the importance of integrated modeling approaches, sector-specific strategies, and the incorporation of climate projections in long-term planning. It also emphasizes the need for aligning energy policies with broader economic and environmental objectives. This review provides valuable insights for researchers, policymakers, and industry stakeholders, offering a comprehensive framework for understanding and improving electricity demand forecasting.

References

  • [1] Altinay G, Karagol E. Electricity consumption and economic growth: Evidence from Turkey. Energy Economics. 2005;27(6):849-56. doi:10.1016/j.eneco.2005.07.002.
  • [2] Tanugur MM, Zehir MA. Investigation of Residential Demand Response Flexibility Including the Effects of the COVID-19 Pandemic on Energy Usage Habits in Turkey. In: 2022 IEEE 4th Global Power, Energy and Communication Conference (GPECOM); 14-17 June 2022; Nevsehir, Turkey. p. 523-528.
  • [3] Evrendilek F, Ertekin C. Assessing the potential of renewable energy sources in Turkey. Renewable Energy. 2003;28(15):2303-2315. doi:10.1016/S0960-1481(03)00138-1.
  • [4] T.C. Ministry of Environment Urbanisation and Climate Change. Total Energy Consumption by Sectors. 2022. Available from: https://cevreselgostergeler.csb.gov.tr/en/total-energy-consumption-by-sectors-i-86042. Accessed: 16 August 2024.
  • [5] Turkish Electricity Transmission Corporation. Türkiye Electricity Production-Transmission 2019 Statistics. 2020. Available from: https://www.teias.gov.tr/turkiye-elektrik-uretim-iletim-istatistikleri. Accessed: 16 August 2024.
  • [6] T.C. Ministry of Environment Urbanisation and Climate Change. Share of Renewable Electricity in Gross Electricity Production. Available from: https://cevreselgostergeler.csb.gov.tr/en/share-of-renewable-electricity-in-gross-electricity-production-i-86048. Accessed: 16 August 2024.
  • [7] Arisoy I, Ozturk I. Estimating industrial and residential electricity demand in Turkey: A time varying parameter approach. Energy. 2014;66:959-64. doi:10.1016/j.energy.2014.01.016.
  • [8] Yucekaya A. Evaluating the Electricity Supply in Turkey Under Economic Growth and Increasing Electricity Demand. J Eng Technol Appl Sci. 2017;2(2):81-89. doi:10.30931/jetas.336840.
  • [9] Bakirtas T, Bildirici M, Bakırtaş T, Karbuz S. An econometric analysis of electricity demand in Turkey. ODTÜ Gelişme Dergisi. 2000;27:23-34. Available from: https://hdl.handle.net/11511/92114.
  • [10] Balat M. Electricity Consumption and Economic Growth in Turkey: A Case Study. Energy Sources Part B. 2009;4(2):155-165. doi:10.1080/15567240701620416.
  • [11] Çunkaş M, Altun AA. Long term electricity demand forecasting in Turkey using artificial neural networks. Energy Sources Part B. 2010;5(3):279-289. doi:10.1080/15567240802533542.
  • [12] Gungor VC, Sahin D, Kocak T, Ergüt S, Buccella C, Cecati C, et al. Smart Grid Technologies: Communication Technologies and Standards. IEEE Trans Ind Inform. 2011;7(4):529-539. doi:10.1109/TII.2011.2166794.
  • [13] Sovacool BK, Hirsh RF. Beyond batteries: An examination of the benefits and barriers to plug-in hybrid electric vehicles (PHEVs) and a vehicle-to-grid (V2G) transition. Energy Policy. 2009;37(3):1095-1103. doi:10.1016/j.enpol.2008.10.005.
  • [14] Rosenquist G, McNeil M, Iyer M, Meyers S, McMahon J. Energy efficiency standards for equipment: Additional opportunities in the residential and commercial sectors. Energy Policy. 2006;34(17):3257-3267. doi:10.1016/j.enpol.2005.06.026.
  • [15] Lund H, Mathiesen BV. Energy system analysis of 100% renewable energy systems-The case of Denmark in years 2030 and 2050. Energy. 2009;34(5):524-531. doi:10.1016/j.energy.2008.04.003.
  • [16] Zhong RY, Xu X, Klotz E, Newman ST. Intelligent Manufacturing in the Context of Industry 4.0: A Review. Engineering. 2017;3(5):616-630. doi:10.1016/J.ENG.2017.05.015.
  • [17] Sedlmeir J, Buhl HU, Fridgen G, Keller R. The Energy Consumption of Blockchain Technology: Beyond Myth. Bus Inf Syst Eng. 2020;62(6):599-608. doi:10.1007/s12599-020-00656-x.
  • [18] Zhang Y, Ansari N. On architecture design, congestion notification, TCP incast and power consumption in data centers. IEEE Commun Surv Tutor. 2013;15(1):39-64. doi:10.1109/SURV.2011.122211.00017.
  • [19] Hook A, Court V, Sovacool BK, Sorrell S. A systematic review of the energy and climate impacts of teleworking. Environ Res Lett. 2020;15(9):093003. doi:10.1088/1748-9326/ab8a84.
  • [20] Strubell E, Ganesh A, McCallum A. Energy and Policy Considerations for Modern Deep Learning. In: Proceedings of the AAAI Conference on Artificial Intelligence; 7-12 February 2020. p. 13693-13696.
  • [21] Palizban O, Kauhaniemi K. Energy storage systems in modern grids—Matrix of technologies and applications. J Energy Storage. 2016;6:248-259. doi:10.1016/j.est.2016.02.001.
  • [22] Guven D, Kayalica MO, Kayakutlu G, Isikli E. Impact of climate change on sectoral electricity demand in Turkey. Energy Sources Part B. 2021;16(3):235-257. doi:10.1080/15567249.2021.1883772.
  • [23] Li M, Allinson D, He M. Seasonal variation in household electricity demand: A comparison of monitored and synthetic daily load profiles. Energy Build. 2018;179:292-300. doi:10.1016/j.enbuild.2018.09.018.
  • [24] Cassarino GT, Sharp E, Barrett M. The impact of social and weather drivers on the historical electricity demand in Europe. Appl Energy. 2018;229:176-185. doi:10.1016/j.apenergy.2018.07.108.
  • [25] Fonseca FR, Jaramillo P, Bergés M, Severnini E. Seasonal effects of climate change on intra-day electricity demand patterns. Clim Change. 2019;154:435-451. doi:10.1007/s10584-019-02413-w.
  • [26] Eshraghi H, de Queiroz AR, Sankarasubramanian A, DeCarolis JF. Quantification of climate-induced interannual variability in residential U.S. electricity demand. Energy. 2021;236:121273. doi:10.1016/j.energy.2021.121273.
  • [27] Load Dispatcher Information System (YTBS). Electricity Statistics of Türkiye. 2019. Available from: https://ytbsbilgi.teias.gov.tr/ytbsbilgi/frm_istatistikler.jsf. Accessed: 15 August 2024.
  • [28] Tatli H. Short-and long-term determinants of residential electricity demand in Turkey. Int J Econ Manag Account. 2017;25(3):443-464. doi:10.31436/ijema.v25i3.448.
  • [29] Zhao Y, Wang S. The relationship between urbanization, economic growth and energy consumption in China: An econometric perspective analysis. Sustainability. 2015;7(5):5609-5627. doi:10.3390/su7055609.
  • [30] Ediger VŞ, Akar S. ARIMA forecasting of primary energy demand by fuel in Turkey. Energy Policy. 2007;35(3):1701-1708. doi:10.1016/j.enpol.2006.05.009.
  • [31] Akay D, Atak M. Grey prediction with rolling mechanism for electricity demand forecasting of Turkey. Energy. 2007;32(9):1670-1675. doi:10.1016/j.energy.2006.11.014.
  • [32] Dilaver Z, Hunt LC. Industrial electricity demand for Turkey: A structural time series analysis. Energy Econ. 2011;33(3):426-436. doi:10.1016/j.eneco.2010.10.001.
  • [33] Hekimoğlu M, Barlas Y. Sensitivity analysis for models with multiple behavior modes: a method based on behavior pattern measures. Syst Dyn Rev. 2016;32(3-4):332-362. doi:10.1002/sdr.1568.
  • [34] Deb C, Zhang F, Yang J, Lee SE, Shah KW. A review on time series forecasting techniques for building energy consumption. Renew Sustain Energy Rev. 2017;74:902-924. doi:10.1016/j.rser.2017.02.085.
  • [35] Lara-Benítez P, Carranza-García M, Luna-Romera JM, Riquelme JC. Temporal convolutional networks applied to energy-related time series forecasting. Appl Sci. 2020;10(7):2322. doi:10.3390/app10072322.
  • [36] Bu SJ, Cho SB. Time series forecasting with multi-headed attention-based deep learning for residential energy consumption. Energies. 2020;13(18):4722. doi:10.3390/en13184722.
  • [37] Nooruldeen O, Alturki S, Baker MR, Ghareeb A. Time Series Forecasting for Decision Making on City-Wide Energy Demand: A Comparative Study. In: 2022 International Conference on Decision Aid Sciences and Applications; Chiangrai, Thailand. p. 1706-1710.
  • [38] Pełka P. Analysis and Forecasting of Monthly Electricity Demand Time Series Using Pattern-Based Statistical Methods. Energies. 2023;16(2):827. doi:10.3390/en16020827.
  • [39] Tzelepi M, Symeonidis C, Nousi P, Kakaletsis E, Manousis T, Tosidis P, et al. Deep Learning for Energy Time-Series Analysis and Forecasting. arXiv preprint. 2023;arXiv:2306.09129.
  • [40] Günay ME. Forecasting annual gross electricity demand by artificial neural networks using predicted values of socio-economic indicators and climatic conditions: Case of Turkey. Energy Policy. 2016;90:92-101. doi:10.1016/j.enpol.2015.12.019.
  • [41] Kucukali S, Baris K. Turkey’s short-term gross annual electricity demand forecast by fuzzy logic approach. Energy Policy. 2010;38(5):2438-2445. doi:10.1016/j.enpol.2009.12.037.
  • [42] Yukseltan E, Yucekaya A, Bilgec AH. Forecasting Electricity Demand for Turkey Using Modulated Fourier Expansion. Am Sci Res J Eng Technol Sci. 2015;14(3):87-94.
  • [43] Saglam M, Spataru C, Karaman OA. Forecasting Electricity Demand in Turkey Using Optimization and Machine Learning Algorithms. Energies. 2023;16(11):4499. doi:10.3390/en16114499.
  • [44] Iranmanesh H, Abdollahzade M, Miranian A. Mid-term energy demand forecasting by hybrid neuro-fuzzy models. Energies. 2012;5(1):1-21. doi:10.3390/en5010001.
  • [45] Kiran MS, Özceylan E, Gündüz M, Paksoy T. A novel hybrid approach based on Particle Swarm Optimization and Ant Colony Algorithm to forecast energy demand of Turkey. Energy Convers Manag. 2012;53(1):75-83. doi:10.1016/j.enconman.2011.08.004.
  • [46] Hamzacebi C, Es HA. Forecasting the annual electricity consumption of Turkey using an optimized grey model. Energy. 2014;70:165-171. doi:10.1016/j.energy.2014.03.105.
  • [47] Barak S, Sadegh SS. Forecasting energy consumption using ensemble ARIMA-ANFIS hybrid algorithm. Int J Electr Power Energy Syst. 2016;82:92-104. doi:10.1016/j.ijepes.2016.03.012.
  • [48] Ozdemir G, Aydemir E, Olgun MO, Mulbay Z. Forecasting of Turkey natural gas demand using a hybrid algorithm. Energy Sources Part B. 2016;11(4):295-302. doi:10.1080/15567249.2011.611580.
  • [49] Aydoğdu G, Yildiz O. Forecasting the annual electricity consumption of Turkey using a hybrid model. In: 2017 25th Signal Processing and Communications Applications Conference (SIU); 15-18 May 2017; Antalya, Turkey. p. 1-4.
  • [50] Al-Musaylh MS, Deo RC, Li Y, Adamowski JF. Two-phase particle swarm optimized-support vector regression hybrid model integrated with improved empirical mode decomposition with adaptive noise for multiple-horizon electricity demand forecasting. Appl Energy. 2018;217:422-439. doi:10.1016/j.apenergy.2018.02.140.
  • [51] Kim M, Choi W, Jeon Y, Liu L. A hybrid neural network model for power demand forecasting. Energies. 2019;12(5):931. doi:10.3390/en12050931.
  • [52] Khan PW, Byun YC, Lee SJ, Park N. Machine Learning Based Hybrid System for Imputation and Efficient Energy Demand Forecasting. Energies. 2020;13(11):2681. doi:10.3390/en11132681.
  • [53] Turgut MS, Eliiyi U, Turgut OE, Öner E, Eliiyi DT. Artificial Intelligence Approaches to Estimate the Transport Energy Demand in Turkey. Arab J Sci Eng. 2021;46(3):2443-2476. doi:10.1007/s13369-020-05108-y.
  • [54] Mir AA, Alghassab M, Ullah K, Khan ZA, Lu Y, Imran M. A review of electricity demand forecasting in low and middle income countries: The demand determinants and horizons. Sustainability. 2020;12(15):5931. doi:10.3390/su12155931.
  • [55] Tunç M, Çamdali Ü, Parmaksizoglu C. Comparison of Turkey’s electrical energy consumption and production with some European countries and optimization of future electrical power supply investments in Turkey. Energy Policy. 2006;34(1):50-59. doi:10.1016/j.enpol.2004.04.027.
  • [56] Turkish Electricity Transmission Corporation. Türkiye Electricity Production-Transmission Statistics. 2020. Available from: https://www.teias.gov.tr/turkiye-elektrik-uretim-iletim-istatistikleri. Accessed: 6 August 2024.
  • [57] Zeynep D. Electricity consumption per capita in Turkey from 1990 to 2022 (in megawatt hours). 2024. Available from: https://www.statista.com/statistics/1370802/turkey-electricity-consumption-per-capita. Accessed: 14 August 2024.
  • [58] Eskeland GS, Mideksa TK. Electricity demand in a changing climate. Mitig Adapt Strateg Glob Chang. 2010;15:877-897. doi:10.1007/s11027-010-9246-x.
  • [59] Halicioglu F. Residential electricity demand dynamics in Turkey. Energy Econ. 2007;29(2):199-210. doi:10.1016/j.eneco.2006.11.007.
  • [60] Melikoglu M. Vision 2023: Scrutinizing achievability of Turkey’s electricity capacity targets and generating scenario based nationwide electricity demand forecasts. Energy Strategy Rev. 2018;22:188-195. doi:10.1016/j.esr.2018.09.004.
  • [61] Cömert M, Yıldız A. Forecasting short-term electricity demand of Turkey by artificial neural networks. In: 2018 International Conference on Artificial Intelligence and Data Processing (IDAP); Malatya, Turkey. p. 1-6.
  • [62] Kök A, Yükseltan E, Hekimoğlu M, Aktunc EA, Yücekaya A, Bilge A. Forecasting Hourly Electricity Demand Under COVID-19 Restrictions. Int J Energy Econ Policy. 2022;12(1):73-85. doi:10.32479/ijeep.11890.
  • [63] Yavuzdemir M, Gökgöz F. Estimating Gross Annual Electricity Demand of Turkey. Int Bus Res. 2015;8(4):145. doi:10.5539/ibr.v8n4p145.
  • [64] İlseven E, Göl M. Medium-term electricity demand forecasting based on MARS. In: 2017 IEEE PES Innovative Smart Grid Technologies Conference Europe (ISGT-Europe); Turin, Italy. p. 1-6.
  • [65] Hamzaçebi C, Es HA, Çakmak R. Forecasting of Turkey’s monthly electricity demand by seasonal artificial neural network. Neural Comput Appl. 2019;31:2217-2231. doi:10.1007/s00521-017-3183-5.
  • [66] Cekinir S, Ozgener O, Ozgener L. Türkiye’s energy projection for 2050. Renew Energy Focus. 2022;43:93-116. doi:10.1016/j.ref.2022.09.003.
  • [67] Kayakuş M. The Estimation of Turkey’s Energy Demand Through Artificial Neural Networks and Support Vector Regression Methods. Alphanumeric J. 2020;8(2):227-236. doi:10.17093/alphanumeric.756651.
  • [68] Yukseltan E, Yucekaya A, Bilge AH. Hourly electricity demand forecasting using Fourier analysis with feedback. Energy Strategy Rev. 2020;31:100524. doi:10.1016/j.esr.2020.100524.
  • [69] Kaytez F. A hybrid approach based on autoregressive integrated moving average and least-square support vector machine for long-term forecasting of net electricity consumption. Energy. 2020;197:117200. doi:10.1016/j.energy.2020.117200.
  • [70] Akkaya AV. GMDH-type neural network-based monthly electricity demand forecasting of Turkey. Int Adv Res Eng J. 2021;5(1):53-60. doi:10.35860/iarej.766762.
  • [71] Tuzemen A. Trigonometric grey prediction method for Turkey’s electricity consumption prediction. In: Panagiotis M, Constantin Z, Michael T, editors. Interdisciplinary Perspectives on Operations Management and Service Evaluation. Business Science Reference; 2020. p. 136-154.
  • [72] Labandeira X, Labeaga JM, Linares P, López-Otero X. The Impacts of Energy Efficiency Policies: Meta-analysis. Energy Policy. 2020;147:111790. doi:10.1016/j.enpol.2020.111790.
  • [73] Voss A. The Adverse Effect of Energy-Efficiency Policy. 2019.
  • [74] Otsuka A. Regional determinants of energy efficiency: Residential energy demand in Japan. Energies. 2018;11(6):1557. doi:10.3390/en11061557.
  • [75] Bigerna S, Chiara D’errico M, Polinori P. Environmental and energy efficiency analysis of EU electricity industry: An almost spatial two stages DEA approach. Energy J. 2019;40(1_suppl):29-54. doi:10.5547/01956574.40.SI1.sbig.
  • [76] Sfinarolakis G. Effectiveness of Energy Efficiency Incentive Programs [PhD dissertation]. University of Rhode Island; 2018.
  • [77] Adua L, Clark B, York R. The ineffectiveness of efficiency: The paradoxical effects of state policy on energy consumption in the United States. Energy Res Soc Sci. 2021;71:101806. doi:10.1016/j.erss.2020.101806.
  • [78] Nepal R, Indra Al Irsyad M, Jamasb T. Sectoral Electricity Demand and Direct Rebound Effect in New Zealand. Energy J. 2021;42(4):153-174. doi:10.5547/01956574.42.4.rnep.
Year 2025, Volume: 9 Issue: 1, 132 - 158
https://doi.org/10.30521/jes.1549293

Abstract

References

  • [1] Altinay G, Karagol E. Electricity consumption and economic growth: Evidence from Turkey. Energy Economics. 2005;27(6):849-56. doi:10.1016/j.eneco.2005.07.002.
  • [2] Tanugur MM, Zehir MA. Investigation of Residential Demand Response Flexibility Including the Effects of the COVID-19 Pandemic on Energy Usage Habits in Turkey. In: 2022 IEEE 4th Global Power, Energy and Communication Conference (GPECOM); 14-17 June 2022; Nevsehir, Turkey. p. 523-528.
  • [3] Evrendilek F, Ertekin C. Assessing the potential of renewable energy sources in Turkey. Renewable Energy. 2003;28(15):2303-2315. doi:10.1016/S0960-1481(03)00138-1.
  • [4] T.C. Ministry of Environment Urbanisation and Climate Change. Total Energy Consumption by Sectors. 2022. Available from: https://cevreselgostergeler.csb.gov.tr/en/total-energy-consumption-by-sectors-i-86042. Accessed: 16 August 2024.
  • [5] Turkish Electricity Transmission Corporation. Türkiye Electricity Production-Transmission 2019 Statistics. 2020. Available from: https://www.teias.gov.tr/turkiye-elektrik-uretim-iletim-istatistikleri. Accessed: 16 August 2024.
  • [6] T.C. Ministry of Environment Urbanisation and Climate Change. Share of Renewable Electricity in Gross Electricity Production. Available from: https://cevreselgostergeler.csb.gov.tr/en/share-of-renewable-electricity-in-gross-electricity-production-i-86048. Accessed: 16 August 2024.
  • [7] Arisoy I, Ozturk I. Estimating industrial and residential electricity demand in Turkey: A time varying parameter approach. Energy. 2014;66:959-64. doi:10.1016/j.energy.2014.01.016.
  • [8] Yucekaya A. Evaluating the Electricity Supply in Turkey Under Economic Growth and Increasing Electricity Demand. J Eng Technol Appl Sci. 2017;2(2):81-89. doi:10.30931/jetas.336840.
  • [9] Bakirtas T, Bildirici M, Bakırtaş T, Karbuz S. An econometric analysis of electricity demand in Turkey. ODTÜ Gelişme Dergisi. 2000;27:23-34. Available from: https://hdl.handle.net/11511/92114.
  • [10] Balat M. Electricity Consumption and Economic Growth in Turkey: A Case Study. Energy Sources Part B. 2009;4(2):155-165. doi:10.1080/15567240701620416.
  • [11] Çunkaş M, Altun AA. Long term electricity demand forecasting in Turkey using artificial neural networks. Energy Sources Part B. 2010;5(3):279-289. doi:10.1080/15567240802533542.
  • [12] Gungor VC, Sahin D, Kocak T, Ergüt S, Buccella C, Cecati C, et al. Smart Grid Technologies: Communication Technologies and Standards. IEEE Trans Ind Inform. 2011;7(4):529-539. doi:10.1109/TII.2011.2166794.
  • [13] Sovacool BK, Hirsh RF. Beyond batteries: An examination of the benefits and barriers to plug-in hybrid electric vehicles (PHEVs) and a vehicle-to-grid (V2G) transition. Energy Policy. 2009;37(3):1095-1103. doi:10.1016/j.enpol.2008.10.005.
  • [14] Rosenquist G, McNeil M, Iyer M, Meyers S, McMahon J. Energy efficiency standards for equipment: Additional opportunities in the residential and commercial sectors. Energy Policy. 2006;34(17):3257-3267. doi:10.1016/j.enpol.2005.06.026.
  • [15] Lund H, Mathiesen BV. Energy system analysis of 100% renewable energy systems-The case of Denmark in years 2030 and 2050. Energy. 2009;34(5):524-531. doi:10.1016/j.energy.2008.04.003.
  • [16] Zhong RY, Xu X, Klotz E, Newman ST. Intelligent Manufacturing in the Context of Industry 4.0: A Review. Engineering. 2017;3(5):616-630. doi:10.1016/J.ENG.2017.05.015.
  • [17] Sedlmeir J, Buhl HU, Fridgen G, Keller R. The Energy Consumption of Blockchain Technology: Beyond Myth. Bus Inf Syst Eng. 2020;62(6):599-608. doi:10.1007/s12599-020-00656-x.
  • [18] Zhang Y, Ansari N. On architecture design, congestion notification, TCP incast and power consumption in data centers. IEEE Commun Surv Tutor. 2013;15(1):39-64. doi:10.1109/SURV.2011.122211.00017.
  • [19] Hook A, Court V, Sovacool BK, Sorrell S. A systematic review of the energy and climate impacts of teleworking. Environ Res Lett. 2020;15(9):093003. doi:10.1088/1748-9326/ab8a84.
  • [20] Strubell E, Ganesh A, McCallum A. Energy and Policy Considerations for Modern Deep Learning. In: Proceedings of the AAAI Conference on Artificial Intelligence; 7-12 February 2020. p. 13693-13696.
  • [21] Palizban O, Kauhaniemi K. Energy storage systems in modern grids—Matrix of technologies and applications. J Energy Storage. 2016;6:248-259. doi:10.1016/j.est.2016.02.001.
  • [22] Guven D, Kayalica MO, Kayakutlu G, Isikli E. Impact of climate change on sectoral electricity demand in Turkey. Energy Sources Part B. 2021;16(3):235-257. doi:10.1080/15567249.2021.1883772.
  • [23] Li M, Allinson D, He M. Seasonal variation in household electricity demand: A comparison of monitored and synthetic daily load profiles. Energy Build. 2018;179:292-300. doi:10.1016/j.enbuild.2018.09.018.
  • [24] Cassarino GT, Sharp E, Barrett M. The impact of social and weather drivers on the historical electricity demand in Europe. Appl Energy. 2018;229:176-185. doi:10.1016/j.apenergy.2018.07.108.
  • [25] Fonseca FR, Jaramillo P, Bergés M, Severnini E. Seasonal effects of climate change on intra-day electricity demand patterns. Clim Change. 2019;154:435-451. doi:10.1007/s10584-019-02413-w.
  • [26] Eshraghi H, de Queiroz AR, Sankarasubramanian A, DeCarolis JF. Quantification of climate-induced interannual variability in residential U.S. electricity demand. Energy. 2021;236:121273. doi:10.1016/j.energy.2021.121273.
  • [27] Load Dispatcher Information System (YTBS). Electricity Statistics of Türkiye. 2019. Available from: https://ytbsbilgi.teias.gov.tr/ytbsbilgi/frm_istatistikler.jsf. Accessed: 15 August 2024.
  • [28] Tatli H. Short-and long-term determinants of residential electricity demand in Turkey. Int J Econ Manag Account. 2017;25(3):443-464. doi:10.31436/ijema.v25i3.448.
  • [29] Zhao Y, Wang S. The relationship between urbanization, economic growth and energy consumption in China: An econometric perspective analysis. Sustainability. 2015;7(5):5609-5627. doi:10.3390/su7055609.
  • [30] Ediger VŞ, Akar S. ARIMA forecasting of primary energy demand by fuel in Turkey. Energy Policy. 2007;35(3):1701-1708. doi:10.1016/j.enpol.2006.05.009.
  • [31] Akay D, Atak M. Grey prediction with rolling mechanism for electricity demand forecasting of Turkey. Energy. 2007;32(9):1670-1675. doi:10.1016/j.energy.2006.11.014.
  • [32] Dilaver Z, Hunt LC. Industrial electricity demand for Turkey: A structural time series analysis. Energy Econ. 2011;33(3):426-436. doi:10.1016/j.eneco.2010.10.001.
  • [33] Hekimoğlu M, Barlas Y. Sensitivity analysis for models with multiple behavior modes: a method based on behavior pattern measures. Syst Dyn Rev. 2016;32(3-4):332-362. doi:10.1002/sdr.1568.
  • [34] Deb C, Zhang F, Yang J, Lee SE, Shah KW. A review on time series forecasting techniques for building energy consumption. Renew Sustain Energy Rev. 2017;74:902-924. doi:10.1016/j.rser.2017.02.085.
  • [35] Lara-Benítez P, Carranza-García M, Luna-Romera JM, Riquelme JC. Temporal convolutional networks applied to energy-related time series forecasting. Appl Sci. 2020;10(7):2322. doi:10.3390/app10072322.
  • [36] Bu SJ, Cho SB. Time series forecasting with multi-headed attention-based deep learning for residential energy consumption. Energies. 2020;13(18):4722. doi:10.3390/en13184722.
  • [37] Nooruldeen O, Alturki S, Baker MR, Ghareeb A. Time Series Forecasting for Decision Making on City-Wide Energy Demand: A Comparative Study. In: 2022 International Conference on Decision Aid Sciences and Applications; Chiangrai, Thailand. p. 1706-1710.
  • [38] Pełka P. Analysis and Forecasting of Monthly Electricity Demand Time Series Using Pattern-Based Statistical Methods. Energies. 2023;16(2):827. doi:10.3390/en16020827.
  • [39] Tzelepi M, Symeonidis C, Nousi P, Kakaletsis E, Manousis T, Tosidis P, et al. Deep Learning for Energy Time-Series Analysis and Forecasting. arXiv preprint. 2023;arXiv:2306.09129.
  • [40] Günay ME. Forecasting annual gross electricity demand by artificial neural networks using predicted values of socio-economic indicators and climatic conditions: Case of Turkey. Energy Policy. 2016;90:92-101. doi:10.1016/j.enpol.2015.12.019.
  • [41] Kucukali S, Baris K. Turkey’s short-term gross annual electricity demand forecast by fuzzy logic approach. Energy Policy. 2010;38(5):2438-2445. doi:10.1016/j.enpol.2009.12.037.
  • [42] Yukseltan E, Yucekaya A, Bilgec AH. Forecasting Electricity Demand for Turkey Using Modulated Fourier Expansion. Am Sci Res J Eng Technol Sci. 2015;14(3):87-94.
  • [43] Saglam M, Spataru C, Karaman OA. Forecasting Electricity Demand in Turkey Using Optimization and Machine Learning Algorithms. Energies. 2023;16(11):4499. doi:10.3390/en16114499.
  • [44] Iranmanesh H, Abdollahzade M, Miranian A. Mid-term energy demand forecasting by hybrid neuro-fuzzy models. Energies. 2012;5(1):1-21. doi:10.3390/en5010001.
  • [45] Kiran MS, Özceylan E, Gündüz M, Paksoy T. A novel hybrid approach based on Particle Swarm Optimization and Ant Colony Algorithm to forecast energy demand of Turkey. Energy Convers Manag. 2012;53(1):75-83. doi:10.1016/j.enconman.2011.08.004.
  • [46] Hamzacebi C, Es HA. Forecasting the annual electricity consumption of Turkey using an optimized grey model. Energy. 2014;70:165-171. doi:10.1016/j.energy.2014.03.105.
  • [47] Barak S, Sadegh SS. Forecasting energy consumption using ensemble ARIMA-ANFIS hybrid algorithm. Int J Electr Power Energy Syst. 2016;82:92-104. doi:10.1016/j.ijepes.2016.03.012.
  • [48] Ozdemir G, Aydemir E, Olgun MO, Mulbay Z. Forecasting of Turkey natural gas demand using a hybrid algorithm. Energy Sources Part B. 2016;11(4):295-302. doi:10.1080/15567249.2011.611580.
  • [49] Aydoğdu G, Yildiz O. Forecasting the annual electricity consumption of Turkey using a hybrid model. In: 2017 25th Signal Processing and Communications Applications Conference (SIU); 15-18 May 2017; Antalya, Turkey. p. 1-4.
  • [50] Al-Musaylh MS, Deo RC, Li Y, Adamowski JF. Two-phase particle swarm optimized-support vector regression hybrid model integrated with improved empirical mode decomposition with adaptive noise for multiple-horizon electricity demand forecasting. Appl Energy. 2018;217:422-439. doi:10.1016/j.apenergy.2018.02.140.
  • [51] Kim M, Choi W, Jeon Y, Liu L. A hybrid neural network model for power demand forecasting. Energies. 2019;12(5):931. doi:10.3390/en12050931.
  • [52] Khan PW, Byun YC, Lee SJ, Park N. Machine Learning Based Hybrid System for Imputation and Efficient Energy Demand Forecasting. Energies. 2020;13(11):2681. doi:10.3390/en11132681.
  • [53] Turgut MS, Eliiyi U, Turgut OE, Öner E, Eliiyi DT. Artificial Intelligence Approaches to Estimate the Transport Energy Demand in Turkey. Arab J Sci Eng. 2021;46(3):2443-2476. doi:10.1007/s13369-020-05108-y.
  • [54] Mir AA, Alghassab M, Ullah K, Khan ZA, Lu Y, Imran M. A review of electricity demand forecasting in low and middle income countries: The demand determinants and horizons. Sustainability. 2020;12(15):5931. doi:10.3390/su12155931.
  • [55] Tunç M, Çamdali Ü, Parmaksizoglu C. Comparison of Turkey’s electrical energy consumption and production with some European countries and optimization of future electrical power supply investments in Turkey. Energy Policy. 2006;34(1):50-59. doi:10.1016/j.enpol.2004.04.027.
  • [56] Turkish Electricity Transmission Corporation. Türkiye Electricity Production-Transmission Statistics. 2020. Available from: https://www.teias.gov.tr/turkiye-elektrik-uretim-iletim-istatistikleri. Accessed: 6 August 2024.
  • [57] Zeynep D. Electricity consumption per capita in Turkey from 1990 to 2022 (in megawatt hours). 2024. Available from: https://www.statista.com/statistics/1370802/turkey-electricity-consumption-per-capita. Accessed: 14 August 2024.
  • [58] Eskeland GS, Mideksa TK. Electricity demand in a changing climate. Mitig Adapt Strateg Glob Chang. 2010;15:877-897. doi:10.1007/s11027-010-9246-x.
  • [59] Halicioglu F. Residential electricity demand dynamics in Turkey. Energy Econ. 2007;29(2):199-210. doi:10.1016/j.eneco.2006.11.007.
  • [60] Melikoglu M. Vision 2023: Scrutinizing achievability of Turkey’s electricity capacity targets and generating scenario based nationwide electricity demand forecasts. Energy Strategy Rev. 2018;22:188-195. doi:10.1016/j.esr.2018.09.004.
  • [61] Cömert M, Yıldız A. Forecasting short-term electricity demand of Turkey by artificial neural networks. In: 2018 International Conference on Artificial Intelligence and Data Processing (IDAP); Malatya, Turkey. p. 1-6.
  • [62] Kök A, Yükseltan E, Hekimoğlu M, Aktunc EA, Yücekaya A, Bilge A. Forecasting Hourly Electricity Demand Under COVID-19 Restrictions. Int J Energy Econ Policy. 2022;12(1):73-85. doi:10.32479/ijeep.11890.
  • [63] Yavuzdemir M, Gökgöz F. Estimating Gross Annual Electricity Demand of Turkey. Int Bus Res. 2015;8(4):145. doi:10.5539/ibr.v8n4p145.
  • [64] İlseven E, Göl M. Medium-term electricity demand forecasting based on MARS. In: 2017 IEEE PES Innovative Smart Grid Technologies Conference Europe (ISGT-Europe); Turin, Italy. p. 1-6.
  • [65] Hamzaçebi C, Es HA, Çakmak R. Forecasting of Turkey’s monthly electricity demand by seasonal artificial neural network. Neural Comput Appl. 2019;31:2217-2231. doi:10.1007/s00521-017-3183-5.
  • [66] Cekinir S, Ozgener O, Ozgener L. Türkiye’s energy projection for 2050. Renew Energy Focus. 2022;43:93-116. doi:10.1016/j.ref.2022.09.003.
  • [67] Kayakuş M. The Estimation of Turkey’s Energy Demand Through Artificial Neural Networks and Support Vector Regression Methods. Alphanumeric J. 2020;8(2):227-236. doi:10.17093/alphanumeric.756651.
  • [68] Yukseltan E, Yucekaya A, Bilge AH. Hourly electricity demand forecasting using Fourier analysis with feedback. Energy Strategy Rev. 2020;31:100524. doi:10.1016/j.esr.2020.100524.
  • [69] Kaytez F. A hybrid approach based on autoregressive integrated moving average and least-square support vector machine for long-term forecasting of net electricity consumption. Energy. 2020;197:117200. doi:10.1016/j.energy.2020.117200.
  • [70] Akkaya AV. GMDH-type neural network-based monthly electricity demand forecasting of Turkey. Int Adv Res Eng J. 2021;5(1):53-60. doi:10.35860/iarej.766762.
  • [71] Tuzemen A. Trigonometric grey prediction method for Turkey’s electricity consumption prediction. In: Panagiotis M, Constantin Z, Michael T, editors. Interdisciplinary Perspectives on Operations Management and Service Evaluation. Business Science Reference; 2020. p. 136-154.
  • [72] Labandeira X, Labeaga JM, Linares P, López-Otero X. The Impacts of Energy Efficiency Policies: Meta-analysis. Energy Policy. 2020;147:111790. doi:10.1016/j.enpol.2020.111790.
  • [73] Voss A. The Adverse Effect of Energy-Efficiency Policy. 2019.
  • [74] Otsuka A. Regional determinants of energy efficiency: Residential energy demand in Japan. Energies. 2018;11(6):1557. doi:10.3390/en11061557.
  • [75] Bigerna S, Chiara D’errico M, Polinori P. Environmental and energy efficiency analysis of EU electricity industry: An almost spatial two stages DEA approach. Energy J. 2019;40(1_suppl):29-54. doi:10.5547/01956574.40.SI1.sbig.
  • [76] Sfinarolakis G. Effectiveness of Energy Efficiency Incentive Programs [PhD dissertation]. University of Rhode Island; 2018.
  • [77] Adua L, Clark B, York R. The ineffectiveness of efficiency: The paradoxical effects of state policy on energy consumption in the United States. Energy Res Soc Sci. 2021;71:101806. doi:10.1016/j.erss.2020.101806.
  • [78] Nepal R, Indra Al Irsyad M, Jamasb T. Sectoral Electricity Demand and Direct Rebound Effect in New Zealand. Energy J. 2021;42(4):153-174. doi:10.5547/01956574.42.4.rnep.
There are 78 citations in total.

Details

Primary Language English
Subjects Computer Software, Software Engineering (Other), Electrical Energy Generation (Incl. Renewables, Excl. Photovoltaics), Energy, Energy Generation, Conversion and Storage (Excl. Chemical and Electrical)
Journal Section Reviews
Authors

Hakan Elbaş 0000-0002-1084-7745

Turgay Tugay Bilgin 0000-0002-9245-5728

Early Pub Date March 20, 2025
Publication Date
Submission Date September 12, 2024
Acceptance Date January 23, 2025
Published in Issue Year 2025 Volume: 9 Issue: 1

Cite

Vancouver Elbaş H, Bilgin TT. Forecasting electricity demand in Türkiye: A comprehensive review of methods, determinants, and policy implications. Journal of Energy Systems. 2025;9(1):132-58.

Journal of Energy Systems is the official journal of 

European Conference on Renewable Energy Systems (ECRES8756 and


Electrical and Computer Engineering Research Group (ECERG)  8753


Journal of Energy Systems is licensed under CC BY-NC 4.0