Research Article
BibTex RIS Cite

FLOOD HAZARD MAPPING USING THE GEOGRAPHICAL INFORMATION SYSTEM BASED ANALYTICAL HIERARCHY PROCESS

Year 2022, , 1155 - 1173, 30.12.2022
https://doi.org/10.21923/jesd.1049464

Abstract

The aim of this study is to reveal the flood risk of Sivas city center and its immediate surroundings, which was chosen as the study area. In the study, 8 criteria (slope, elevation, aspect, precipitation, large soil group, distance to rivers, lithology and land use) were selected for flood risk mapping. These criteria were analyzed using the Geographical Information System (GIS) on the basis of the Analytical Hierarchy Process (AHP) method, which is one of the multi-criteria decision-making methods, and areas at risk for flooding were determined. The CR (Consistency) value was calculated as 0.03 for the criteria considered in flood hazard mapping within the scope of the AHP method, and this value showed that the results obtained were consistent and acceptable. The risk categories revealed by the flood hazard map created within the framework of the method are “very high (12.72%)”, “high (24.40%)”, “medium (28.14%)”, “low (25.40%)” and “very low (11.72%)”. )” was represented by 5 different classes. Some of the residential areas (25.20%) and some of the agricultural areas (47.28%) in the study area were included in the category of “very high” risky areas in terms of flooding. The results showed that GIS-based AHP method can provide great benefits to decision makers in reducing flood risks. In order to reduce flood risks, flood risk data should be reflected in city plans and plan implementations should be given priority according to the degree of flood risk.

References

  • Abdi, P., 2006. Evaluate the potential of flooding Zanjanrood basin with SCS and GIS, National Committee of Irrigation and Drainage, Technical workshop of coexistence with floods.
  • Armenakis, C., Nirupama, N., 2014. Flood risk mapping for the city of Toronto. Proc. Econ. Financ., 18, 320–326.
  • Arnell, N.W., Gosling, S.N., 2016. The impacts of climate change on river flood risk at the global scale. Climatic Change, 134, 387–401.
  • Atmaca, E., 2004. Sivas İl Merkezi Katı Atık Yönetiminin İrdelenmesi ve Yeniden Planlanması, Doktora Tezi, Cumhuriyet Üniversitesi Fen Bilimleri Enstitüsü Çevre Mühendisliği Anabilim Dalı, Sivas, 137s.
  • Bathrellos, G.D., Karymbalis, E., Skilodimou, H.D., Gaki-Papanastassiou, K., Baltas, E. A., 2016. Urban flood hazard assessment in the basin of Athens Metropolitan city, Greece. Environ. Earth Sci., 75, 319.
  • Bathrellos, G.D., Skilodimou, H.D., Chousianitis, K., Youssef, A.M., Pradhan, B., 2017. Suitability estimation for urban development using multi-hazard assessment map. Sci. Total Environ., 575, 119–134.
  • Bathrellos, G.D., Gaki-Papanastassiou, K., Skilodimou, H.D., Papanastassiou, D., Chousianitis, K.G., 2012. Potential suitability for urban planning and industry development by using natural hazard maps and geological-geomorphological parameters. Environ. Earth, 66, 537–548.
  • Bhushan, N., Rai, K., 2004. Strategic decision making: Applying the Analytic Hierarchy Process, Springer-Verlag, New York, pp. 172.
  • Cai, S., Fan, J., Yang, W., 2021. Flooding risk assessment and analysis based on GIS and the TFN-AHP method: A case study of Chongqing, China. Atmosphere, 12(5), 623.
  • Cabrera, J. S., Lee, H. S., 2020. Flood risk assessment for Davao Oriental in the Philippines using geographic information system‐based multi‐criteria analysis and the maximum entropy model. Journal of Flood Risk Management, 13(2), e12607.
  • Chakraborty, S., Mukhopadhyay, S., 2019. Assessing flood risk using analytical hierarchy process (AHP) and geographical information system (GIS): application in Coochbehar district of West Bengal, India. Natural Hazards, 99(1), 247-274.
  • Chen, Y., Liu, R., Barrett, D., Gao, L., Zhou, M., Renzullo, L., Emlyanova, I., 2015. A spatial assessment framework for evaluating flood risk under extreme climates. Sci Total Environ., 538, 512–523.
  • Cigna, F., Tapete, D., Lee, K., 2018. Geological hazards in the UNESCO World Heritage sites of the UK: from the global to the local scale perspective. Earth Sci. Rev., 176, 166–194,
  • CRED, 2018. Centre for research on the epidemiology of disasters-review of disaster events, https://www.cred.be/publications. (Accessed 14 April 2019).
  • Das, S., 2018. Geographic information system and AHP-based flood hazard zonation of Vaitarna basin, Maharashtra, India. Arabian Journal of Geosciences, 11(19), 1-13.
  • Das, S., Pardeshi, S.D., 2018a. Comparative analysis of lineaments extracted from Cartosat, SRTM and Aster DEM: a study based on four watersheds in Konkan region, India. Spat Inf Res, 26(1), 47–57.
  • Dash, P., Sar, J., 2020. Identification and validation of potential flood hazard area using GIS‐based multi‐criteria analysis and satellite data‐derived water index. Journal of Flood Risk Management, 13(3), e12620.
  • Demir, V., Kişi, O., 2016. Flood hazard mapping by using geographic information system and hydraulic model: Mert River, Samsun, Turkey, Adv. Meteorol., 1–9.
  • Dölek, İ., 2015. Sungu beldesi ve yakın çevresinde (Muş) sel ve taşkına duyarlı alanların belirlenmesi. Marmara Coğrafya Dergisi, 31, 258-280.
  • Dölek, İ., Avcı, V., 2017. Muş ilinin sel ve taşkın duyarlılık haritalarının oluşturulması. The Journal of Academic Social Science, 5(44), 190-204.
  • Eastman, J.R., 2003. IDRISI Kilimanjaro: Guide to GIS and image processing. Manual Version 14.00, Clark University Worcester.
  • Feloni, E., Mousadis, I., Baltas, E., 2020. Flood vulnerability assessment using a GIS‐based multi‐criteria approach—The case of Attica region. Journal of Flood Risk Management, 13, e12563.
  • Ghezelsofloo, A.A., Hajibigloo, M., 2020. Application of flood hazard potential zoning by using AHP algorithm. Civil Engineering Research Journal, 9 (5), 150-159.
  • Ghosh, A., Kar, S.K., 2018. Application of analytical hierarchy process (AHP) for flood risk assessment: a case study in Malda district of West Bengal, India. Nat. Hazards, 94, 349–368.
  • Gigović, L., Pamučar, D., Bajić, Z., Drobnjak, S., 2017. Application of GIS-interval rough AHP methodology for flood hazard mapping in urban areas. Water, 9(6), 360.
  • Hammami, S., Zouhri, L., Souissi, D., Souei, A., Zghibi, A., Marzougui, A., Dlala, M., 2019. Application of the GIS based multi-criteria decision analysis and analytical hierarchy process (AHP) in the flood susceptibility mapping (Tunisia). Arabian Journal of Geosciences, 12(21), 1-16.
  • Hansen, H.S., 2005. GIS-based multi-criteria analysis of wind farm development. ScanGIS 2005: Proceedings of the 10th Scandinavian Research Conference on Geographical Information Science, ScanGIS, Denmark, 75- 87.
  • Hanson, S., Nicholls, R., Ranger, N., Hallegatte, S., Corfee-Morlot, J., Herweijer, C., Chateau, J., 2011. A global ranking of port cities with high exposure to climate extremes. Climatic Change, 104, 89–111.
  • Hapciuc, O. E., Romanescu, G., Minea, I., Iosub, M., Enea, A., Sandu, I., 2016. Flood susceptibility analysis of the cultural heritage in the Sucevita catchment (Romania). Int. J. Conserv. Sci. 7, 501–510.
  • Hategekimana, Y., Yu, L., Nie, Y., Zhu, J., Liu, F., Guo, F., 2018. Integration of multi-parametric fuzzy analytic hierarchy process and GIS along the UNESCO World Heritage: a flood hazard index, Mombasa County, Kenya. Natural Hazards, 92(2), 1137-1153.
  • HGM, 2005. Çalışma alanına ait 1/25.000 ölçekli sayısal topoğrafik harita, Milli Savunma Bakanlığı Harita Genel Müdürlüğü, Ankara.
  • Huang, X., Tan, H., Zhou, J., Yang, T., Benjamin, A., Wen, S.S., Li, S., Liu, S., Liu, A., Li, X., et al., 2008. Flood hazard in Hunan province of China: an economic loss analysis. Nat Hazards, 47, 6573.
  • Işık, F., Bahadır, M., Zeybek, H. İ., Çağlak, S., 2020. Karadere Çayı taşkını (Araklı Trabzon). Mavi Atlas, 8(2), 526–547.
  • Jonkman, S.N., Dawson, R.J., 2012. Issues and Challenges in Flood Risk Management-Editorial for the Special Issue on Flood Risk Management. Water, 4, 785–792.
  • Karakuş, C.B., Demiroğlu, D., 2022. Investigation of relationship between land use/cover (LULC) and GIS-based bioclimatic comfort zones based on environmental climate parameters and bioclimatic indices.
  • Arab. J. Geosci. DOI : 10.1007/s12517-022-10407-9 (Publish Online).
  • Kazakis, N., Kougias, I., Patsialis, T., 2015. Assessment of flood hazard areas at a regional scale using an index-based approach and Analytical Hierarchy Process: Application in Rhodope–Evros region, Greece. Science of the Total Environment, 538, 555-563.
  • Khan, S.I., Hong, Y., Wang, J., Yilmaz, K.K., Gourley, J.J., Adler, R.F., Brakenridge, G.R., Policelli, F., Habib, S., Irwin, D., 2011. Satellite remote sensing and hydrologic modeling for flood inundation mapping in Lake Victoria Basin: Implications for hydrologic prediction in Ungauged Basins. IEEE Trans. Geosci. Remote Sens., 49, 85–95.
  • KHGM, 2001. Çalışma alanına ait 1/25.000 ölçekli sayısal toprak haritası, T.C. Gıda Tarım ve Hayvancılık Bakanlığı, Köy Hizmetleri Genel Müdürlüğü, Ankara.
  • Kittipongvises, S., Phetrak, A., Rattanapun, P., Brundiers, K., Buizer, J.L., Melnick, R., 2020. AHP-GIS analysis for flood hazard assessment of the communities nearby the world heritage site on Ayutthaya Island, Thailand. International Journal of Disaster Risk Reduction, 48, 101612.
  • Koem, C., Tantanee, S., 2020. Flash flood hazard mapping based on AHP with GIS and satellite information in Kampong Speu Province, Cambodia. International Journal of Disaster Resilience in the Built Environment.
  • Komolafe, A. A., Awe, B. S., Olorunfemi, I. E., Oguntunde, P. G., 2020. Modelling flood-prone area and vulnerability using integration of multi-criteria analysis and HAND model in the Ogun River Basin, Nigeria. Hydrological Sciences Journal, 65(10), 1766-1783.
  • Kontos, T.D., Komilis, D.P., Halvadakis, C.P., 2005. Siting MSW landfills with a spatial multiple criteria analysis methodology. Waste Management, 25(8), 818-832.
  • Kourgialas, N.N., Karatzas, G.P., 2016. A flood risk decision making approach for Mediterranean tree crops using GIS; climate change effects and flood-tolerant species. Environ. Sci. Policy, 63, 132–142.
  • Lanza, S.G., 2003. Flood hazard threat on cultural heritage in the town of Genoa (Italy). J. Cult. Herit., 43, 159–167.
  • Lappas, I., Kallioras, A., 2019. Flood susceptibility assessment through GIS-based multi-criteria approach and analytical hierarchy process (AHP) in a river basin in Central Greece. Int. Res. J. Eng. Technol.
  • Liu, R.. Zhang, K., Zhang, Z., Borthwick, A.G., 2014. Land-use suitability analysis for urban development in Beijing. Journal of Environmental Managegement, 145, 170-179.
  • Luu, C., Von Meding, J., Kanjanabootra, S., 2018. Assessing flood hazard using flood marks and analytic hierarchy process approach: a case study for the 2013 flood event in Quang Nam, Vietnam. Natural Hazards, 90(3), 1031-1050.
  • Mahmoud, S. H., Gan, T. Y., 2018. Multi-criteria approach to develop flood susceptibility maps in arid regions of Middle East. Journal of Cleaner Production, 196, 216-229.
  • Malczewski, J., 2006. GIS-based multicriteria decision analysis: a survey of the literature. Int J Geogr Inf Sci., 20(7), 703-726.
  • Manfreda, S., Di Leo, M., Sole, A., 2011. Detection of flood-prone areas using digital elevation models. J. Hydrol. Eng., 16, 781–790.
  • Mohamed, S.A., 2019. Application of satellite image processing and GIS-Spatial modeling for mapping urban areas prone to flash floods in Qena governorate, Egypt. Journal of African Earth Sciences, 158, 103507.
  • MPGM, 2015. 1/100.000 ölçekli çevre düzeni planı haritası, Çevre ve Şehircilik Bakanlığı Mekânsal Planlama Genel Müdürlüğü, Ankara.
  • MTA, 2005. Çalışma alanına ait 1/25.000 ölçekli sayısal jeoloji haritası, Maden ve Tetkik Arama Genel Müdürlüğü, Ankara.
  • Oğuz, K., Oğuz, E., Coşkun. M., 2016. Coğrafi Bilgi Sistemleri ile taşkın risk alanlarının belirlenmesi: Artvin ili örneği. 4. Ulusal Taşkın Sempozyumu, 23– 25 Kasım 2016, Recep Tayyip Erdoğan Üniversitesi, Rize.
  • Oğuz, E., Oğuz, K., Öztürk, K., 2022. Düzce bölgesi taşkın duyarlılık alanlarının belirlenmesi. Geomatik, 7(3), 220-234.
  • Oğuz, K., Akın, B.S., 2019. Doğu Akdeniz Havzası’nda Sıcaklık, Yağış ve Aerosol Değişiminin İncelenmesi. Mühendislik Bilimleri ve Tasarım Dergisi, 7(2), 244-253.
  • Özcan, O., 2017. Taşkın tespitinin farklı yöntemlerle değerlendirilmesi: Ayamama Deresi örneği. Doğal Afetler ve Çevre Dergisi, 3(1), 9-27.
  • Orencio, P.M., Fujii, M., 2013. A localized disaster-resilience index to assess coastal communities based on an analytic hierarchy process (AHP). Int. J. Disast. Risk. Re., 3, 62–75.
  • Ouma, Y.O., Tateishi, R., 2014. Urban flood vulnerability and risk mapping using integrated multi-parametric AHP and GIS: methodological overview and case study assessment. Water, 6(6), 1515-1545.
  • Paquette, J., Lowry, J., 2012. Flood hazard modelling and risk assessment in the Nadi River Basin, Fiji, using GIS and MCDA. South Pacific J Nat Appl Sci., 30, 3343.
  • Radwan, F., Alazba, A.A., Mossad, A., 2019. Flood risk assessment and mapping using AHP in arid and semiarid regions. Acta Geophysica, 67(1), 215-229.
  • Rahmati, O., Zeinivand, H., Besharat, M., 2016. Flood hazard zoning in Yasooj region, Iran, using GIS and multi-criteria decision analysis. Geomatics, Natural Hazards and Risk, 7(3), 1000-1017.
  • Ramkar, P., Yadav, S.M., 2021. Flood risk index in data-scarce river basins using the AHP and GIS approach. Natural Hazards, 109(1), 1119-1140.
  • Razavi A., 2008. Principles of determining the boundary water resources. 1st Edition, Publishers of Power and Water University of Tehran, Iran.
  • Saaty, T., 1980. The Analytic Hierarchy Process. McGrawHill, New York.
  • Safaripour, M., Monavari, M., Zare, M., Abedi, Z., Gharagozlou, A., 2012. Flood risk assessment using GIS (case study: Golestan province, Iran). Pol. J. Environ. Stud., 21, 1817–1824.
  • Scheuer, S., Haase, D., Meyer, V., 2011. Exploring multicriteria flood vulnerability by integrating economic, social and ecological dimensions of flood risk and coping capacity: from a starting point view towards an end point view of vulnerability. Nat Hazards, 58, 731-751.
  • Sener, S., Sener, E., Nas, B., 2011. Selection of Landfill Site using GIS and Multicriteria Decision Analysis for Beyşehir Lake Catchment area (Konya, Turkey). Mühendislik Bilimleri ve Tasarım Dergisi, 1(3), 134-144.
  • Sengun, M.T., Karadeniz, E., Saman, B., 2019. Tavşanlı Deresinde (Sivas-Hafik) taşkın risk analizi. 1st Istanbul International Geography Congress Proceedings Book: Istanbul University Press, İstanbul, Türkiye, 653-668.
  • Shahabi, H., Keihanfard, S., Ahmad, B.B., Amiri, M.J.T., 2014. Evaluating Boolean, AHP and WLC methods for the selection of waste landfill sites using GIS and satellite images. Environmental Earth Sciences, 71(9), 4221-4233.
  • SMİM, 2020. Çalışma alanına ait 1970-2020 yılları arasındaki yağış verileri, Sivas Meteoroloji İl Müdürlüğü, Sivas.
  • Solin, L., 2012. Spatial variability in the flood vulnerability of urban areas in the headwater basins of Slovakia. Flood Risk Manag., 5(4), 303-320.
  • Souissi, D., Zouhri, L., Hammami, S., Msaddek, M. H., Zghibi, A., Dlala, M., 2020. GIS-based MCDM–AHP modeling for flood susceptibility mapping of arid areas, southeastern Tunisia. Geocarto International, 35(9), 991-1017.
  • Sözer, B., Kocaman, S., Nefeslioglu, H. A., Firat, O., Gokceoglu, C., 2018. Preliminary investigations on flood susceptibility mapping in Ankara (Turkey) using modified analytical hierarchy process (M-AHP). The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-5, ISPRS TC V Mid-term Symposium “Geospatial Technology – Pixel to People”, 20–23 November 2018, Dehradun, India.
  • Stieglitz, M., Rind, D., Famiglietti, J., Rosenzweig, C., 1997. An efficient approach to modeling the topographic control of surface hydrology for regional and global climate modeling. J. Clim., 10, 118–137.
  • Swain, K. C., Singha, C., Nayak, L., 2020. Flood susceptibility mapping through the GIS-AHP technique using the cloud. ISPRS International Journal of Geo-Information, 9(12), 720.
  • Tella, A., Balogun, A. L., 2020. Ensemble fuzzy MCDM for spatial assessment of flood susceptibility in Ibadan, Nigeria. Natural Hazards, 104(3), 2277-2306.
  • Tokgözlü, A., Özkan, E., 2018. Taşkın risk haritalarinda AHP yönteminin uygulanması: Aksu Çayı Havzası örneği. Süleyman Demirel Üniversitesi Fen-Edebiyat Fakültesi Sosyal Bilimler Dergisi, (44), 151-176.
  • Topdağ, B., 2003. Sivas ili dolayının sel ve taşkınlar açısından incelenmesi ve alınması gereken önlemler. Yüksek Lisans Tezi, Cumhuriyet Üniversitesi, Fen Bilimleri Enstitüsü, Sivas.
  • Tüzgen, G. A., Karaca, Ö., 2021. Çerçi ve Murt Deresi (Fethiye-Muğla) taşkın duyarlılık alanlarının CBS ile çok kriterli karar verme analizi kullanılarak haritalanması. Yerbilimleri, , 42(1), 121-143.
  • URL-1. https://www.afad.gov.tr/kurumlar/afad.gov.tr/e_kutuphane/kurumsal-raporlar/afet_istatistikleri_2020_web.pdf.
  • Veerbeek, W., Zevenbergen, C., 2009. Deconstructing urban flood damages: increasing the expressiveness of flood damage models combining a high level of detail with a broad attribute set. Flood Risk Manag., 2, 4557.
  • Wang, J.J., 2013. The empirical study of flood risk maps to cultural heritages in Taiwan. Int. J. Chem. Environ. Biol. Sci., 1, 135–139.
  • Yal, G., Akgün, H., 2013. Landfill site selection and landfill liner design for Ankara, Turkey. Environ Earth Sci., 70, 2729–2752.
  • Zaharia, L., Costache, R., Prăvălie, R., Ioana-Toroimac, G., 2017. Mapping flood and flooding potential indices: a methodological approach to identifying areas susceptible to flood and flooding risk. Case study: the Prahova catchment (Romania). Frontiers of Earth Science, 11(2), 229-247.

COĞRAFİ BİLGİ SİSTEMİ TABANLI ANALİTİK HİYERARŞİ SÜRECİ KULLANILARAK TAŞKIN TEHLİKE HARİTALAMASI

Year 2022, , 1155 - 1173, 30.12.2022
https://doi.org/10.21923/jesd.1049464

Abstract

Bu çalışmanın amacı; çalışma alanı olarak seçilmiş olan Sivas kent merkezi ve yakın çevresinin taşkın riskini ortaya koymaktır. Çalışmada taşkın risk haritalaması için 8 adet kriter (eğim, yükseklik, bakı, yağış, büyük toprak grubu, akarsulara uzaklık, litoloji ve arazi kullanımı) seçilmiştir. Bu kriterler çok kriterli karar verme yöntemlerinden olan Analitik Hiyerarşi -Süreci (AHS) yöntemi temelinde Coğrafi Bilgi Sistemi (CBS) kullanılarak analiz edilmiş ve taşkın açısından riskli alanlar belirlenmiştir. AHS yöntemi kapsamında taşkın tehlike haritalamasında dikkate alınan kriterler için CR (Tutarlılık) değeri 0.03 olarak hesaplanmış olup, bu değer elde edilen sonuçların tutarlı ve kabul edilebilir olduğunu göstermiştir. Yöntem çerçevesinde oluşturulmuş olan taşkın tehlike haritasının ortaya koyduğu risk kategorileri “çok yüksek (% 12.72)”, “yüksek (% 24.40)”, “orta (% 28.14)”, “düşük (% 25.40)” ve “çok düşük (% 11.32)” şeklinde 5 farklı sınıf ile temsil edilmiştir. Çalışma alanındaki yerleşim alanlarının bir kısmı (% 25.20) ile tarım alanlarının bir kısmı (% 47.28), taşkın riski açısından “çok yüksek” riskli alanlar kategorisinde yer almıştır. Elde edilen sonuçlar; taşkın risklerinin azaltılmasında CBS tabanlı AHS yönteminin karar vericilere oldukça faydalar sağlayabileceğini göstermiştir. Taşkın risklerinin azaltılmasına yönelik olarak taşkın risk verileri kent planlarına yansıtılmalı ve plan uygulamalarına taşkın riskinin derecesine göre öncelik verilmelidir.

References

  • Abdi, P., 2006. Evaluate the potential of flooding Zanjanrood basin with SCS and GIS, National Committee of Irrigation and Drainage, Technical workshop of coexistence with floods.
  • Armenakis, C., Nirupama, N., 2014. Flood risk mapping for the city of Toronto. Proc. Econ. Financ., 18, 320–326.
  • Arnell, N.W., Gosling, S.N., 2016. The impacts of climate change on river flood risk at the global scale. Climatic Change, 134, 387–401.
  • Atmaca, E., 2004. Sivas İl Merkezi Katı Atık Yönetiminin İrdelenmesi ve Yeniden Planlanması, Doktora Tezi, Cumhuriyet Üniversitesi Fen Bilimleri Enstitüsü Çevre Mühendisliği Anabilim Dalı, Sivas, 137s.
  • Bathrellos, G.D., Karymbalis, E., Skilodimou, H.D., Gaki-Papanastassiou, K., Baltas, E. A., 2016. Urban flood hazard assessment in the basin of Athens Metropolitan city, Greece. Environ. Earth Sci., 75, 319.
  • Bathrellos, G.D., Skilodimou, H.D., Chousianitis, K., Youssef, A.M., Pradhan, B., 2017. Suitability estimation for urban development using multi-hazard assessment map. Sci. Total Environ., 575, 119–134.
  • Bathrellos, G.D., Gaki-Papanastassiou, K., Skilodimou, H.D., Papanastassiou, D., Chousianitis, K.G., 2012. Potential suitability for urban planning and industry development by using natural hazard maps and geological-geomorphological parameters. Environ. Earth, 66, 537–548.
  • Bhushan, N., Rai, K., 2004. Strategic decision making: Applying the Analytic Hierarchy Process, Springer-Verlag, New York, pp. 172.
  • Cai, S., Fan, J., Yang, W., 2021. Flooding risk assessment and analysis based on GIS and the TFN-AHP method: A case study of Chongqing, China. Atmosphere, 12(5), 623.
  • Cabrera, J. S., Lee, H. S., 2020. Flood risk assessment for Davao Oriental in the Philippines using geographic information system‐based multi‐criteria analysis and the maximum entropy model. Journal of Flood Risk Management, 13(2), e12607.
  • Chakraborty, S., Mukhopadhyay, S., 2019. Assessing flood risk using analytical hierarchy process (AHP) and geographical information system (GIS): application in Coochbehar district of West Bengal, India. Natural Hazards, 99(1), 247-274.
  • Chen, Y., Liu, R., Barrett, D., Gao, L., Zhou, M., Renzullo, L., Emlyanova, I., 2015. A spatial assessment framework for evaluating flood risk under extreme climates. Sci Total Environ., 538, 512–523.
  • Cigna, F., Tapete, D., Lee, K., 2018. Geological hazards in the UNESCO World Heritage sites of the UK: from the global to the local scale perspective. Earth Sci. Rev., 176, 166–194,
  • CRED, 2018. Centre for research on the epidemiology of disasters-review of disaster events, https://www.cred.be/publications. (Accessed 14 April 2019).
  • Das, S., 2018. Geographic information system and AHP-based flood hazard zonation of Vaitarna basin, Maharashtra, India. Arabian Journal of Geosciences, 11(19), 1-13.
  • Das, S., Pardeshi, S.D., 2018a. Comparative analysis of lineaments extracted from Cartosat, SRTM and Aster DEM: a study based on four watersheds in Konkan region, India. Spat Inf Res, 26(1), 47–57.
  • Dash, P., Sar, J., 2020. Identification and validation of potential flood hazard area using GIS‐based multi‐criteria analysis and satellite data‐derived water index. Journal of Flood Risk Management, 13(3), e12620.
  • Demir, V., Kişi, O., 2016. Flood hazard mapping by using geographic information system and hydraulic model: Mert River, Samsun, Turkey, Adv. Meteorol., 1–9.
  • Dölek, İ., 2015. Sungu beldesi ve yakın çevresinde (Muş) sel ve taşkına duyarlı alanların belirlenmesi. Marmara Coğrafya Dergisi, 31, 258-280.
  • Dölek, İ., Avcı, V., 2017. Muş ilinin sel ve taşkın duyarlılık haritalarının oluşturulması. The Journal of Academic Social Science, 5(44), 190-204.
  • Eastman, J.R., 2003. IDRISI Kilimanjaro: Guide to GIS and image processing. Manual Version 14.00, Clark University Worcester.
  • Feloni, E., Mousadis, I., Baltas, E., 2020. Flood vulnerability assessment using a GIS‐based multi‐criteria approach—The case of Attica region. Journal of Flood Risk Management, 13, e12563.
  • Ghezelsofloo, A.A., Hajibigloo, M., 2020. Application of flood hazard potential zoning by using AHP algorithm. Civil Engineering Research Journal, 9 (5), 150-159.
  • Ghosh, A., Kar, S.K., 2018. Application of analytical hierarchy process (AHP) for flood risk assessment: a case study in Malda district of West Bengal, India. Nat. Hazards, 94, 349–368.
  • Gigović, L., Pamučar, D., Bajić, Z., Drobnjak, S., 2017. Application of GIS-interval rough AHP methodology for flood hazard mapping in urban areas. Water, 9(6), 360.
  • Hammami, S., Zouhri, L., Souissi, D., Souei, A., Zghibi, A., Marzougui, A., Dlala, M., 2019. Application of the GIS based multi-criteria decision analysis and analytical hierarchy process (AHP) in the flood susceptibility mapping (Tunisia). Arabian Journal of Geosciences, 12(21), 1-16.
  • Hansen, H.S., 2005. GIS-based multi-criteria analysis of wind farm development. ScanGIS 2005: Proceedings of the 10th Scandinavian Research Conference on Geographical Information Science, ScanGIS, Denmark, 75- 87.
  • Hanson, S., Nicholls, R., Ranger, N., Hallegatte, S., Corfee-Morlot, J., Herweijer, C., Chateau, J., 2011. A global ranking of port cities with high exposure to climate extremes. Climatic Change, 104, 89–111.
  • Hapciuc, O. E., Romanescu, G., Minea, I., Iosub, M., Enea, A., Sandu, I., 2016. Flood susceptibility analysis of the cultural heritage in the Sucevita catchment (Romania). Int. J. Conserv. Sci. 7, 501–510.
  • Hategekimana, Y., Yu, L., Nie, Y., Zhu, J., Liu, F., Guo, F., 2018. Integration of multi-parametric fuzzy analytic hierarchy process and GIS along the UNESCO World Heritage: a flood hazard index, Mombasa County, Kenya. Natural Hazards, 92(2), 1137-1153.
  • HGM, 2005. Çalışma alanına ait 1/25.000 ölçekli sayısal topoğrafik harita, Milli Savunma Bakanlığı Harita Genel Müdürlüğü, Ankara.
  • Huang, X., Tan, H., Zhou, J., Yang, T., Benjamin, A., Wen, S.S., Li, S., Liu, S., Liu, A., Li, X., et al., 2008. Flood hazard in Hunan province of China: an economic loss analysis. Nat Hazards, 47, 6573.
  • Işık, F., Bahadır, M., Zeybek, H. İ., Çağlak, S., 2020. Karadere Çayı taşkını (Araklı Trabzon). Mavi Atlas, 8(2), 526–547.
  • Jonkman, S.N., Dawson, R.J., 2012. Issues and Challenges in Flood Risk Management-Editorial for the Special Issue on Flood Risk Management. Water, 4, 785–792.
  • Karakuş, C.B., Demiroğlu, D., 2022. Investigation of relationship between land use/cover (LULC) and GIS-based bioclimatic comfort zones based on environmental climate parameters and bioclimatic indices.
  • Arab. J. Geosci. DOI : 10.1007/s12517-022-10407-9 (Publish Online).
  • Kazakis, N., Kougias, I., Patsialis, T., 2015. Assessment of flood hazard areas at a regional scale using an index-based approach and Analytical Hierarchy Process: Application in Rhodope–Evros region, Greece. Science of the Total Environment, 538, 555-563.
  • Khan, S.I., Hong, Y., Wang, J., Yilmaz, K.K., Gourley, J.J., Adler, R.F., Brakenridge, G.R., Policelli, F., Habib, S., Irwin, D., 2011. Satellite remote sensing and hydrologic modeling for flood inundation mapping in Lake Victoria Basin: Implications for hydrologic prediction in Ungauged Basins. IEEE Trans. Geosci. Remote Sens., 49, 85–95.
  • KHGM, 2001. Çalışma alanına ait 1/25.000 ölçekli sayısal toprak haritası, T.C. Gıda Tarım ve Hayvancılık Bakanlığı, Köy Hizmetleri Genel Müdürlüğü, Ankara.
  • Kittipongvises, S., Phetrak, A., Rattanapun, P., Brundiers, K., Buizer, J.L., Melnick, R., 2020. AHP-GIS analysis for flood hazard assessment of the communities nearby the world heritage site on Ayutthaya Island, Thailand. International Journal of Disaster Risk Reduction, 48, 101612.
  • Koem, C., Tantanee, S., 2020. Flash flood hazard mapping based on AHP with GIS and satellite information in Kampong Speu Province, Cambodia. International Journal of Disaster Resilience in the Built Environment.
  • Komolafe, A. A., Awe, B. S., Olorunfemi, I. E., Oguntunde, P. G., 2020. Modelling flood-prone area and vulnerability using integration of multi-criteria analysis and HAND model in the Ogun River Basin, Nigeria. Hydrological Sciences Journal, 65(10), 1766-1783.
  • Kontos, T.D., Komilis, D.P., Halvadakis, C.P., 2005. Siting MSW landfills with a spatial multiple criteria analysis methodology. Waste Management, 25(8), 818-832.
  • Kourgialas, N.N., Karatzas, G.P., 2016. A flood risk decision making approach for Mediterranean tree crops using GIS; climate change effects and flood-tolerant species. Environ. Sci. Policy, 63, 132–142.
  • Lanza, S.G., 2003. Flood hazard threat on cultural heritage in the town of Genoa (Italy). J. Cult. Herit., 43, 159–167.
  • Lappas, I., Kallioras, A., 2019. Flood susceptibility assessment through GIS-based multi-criteria approach and analytical hierarchy process (AHP) in a river basin in Central Greece. Int. Res. J. Eng. Technol.
  • Liu, R.. Zhang, K., Zhang, Z., Borthwick, A.G., 2014. Land-use suitability analysis for urban development in Beijing. Journal of Environmental Managegement, 145, 170-179.
  • Luu, C., Von Meding, J., Kanjanabootra, S., 2018. Assessing flood hazard using flood marks and analytic hierarchy process approach: a case study for the 2013 flood event in Quang Nam, Vietnam. Natural Hazards, 90(3), 1031-1050.
  • Mahmoud, S. H., Gan, T. Y., 2018. Multi-criteria approach to develop flood susceptibility maps in arid regions of Middle East. Journal of Cleaner Production, 196, 216-229.
  • Malczewski, J., 2006. GIS-based multicriteria decision analysis: a survey of the literature. Int J Geogr Inf Sci., 20(7), 703-726.
  • Manfreda, S., Di Leo, M., Sole, A., 2011. Detection of flood-prone areas using digital elevation models. J. Hydrol. Eng., 16, 781–790.
  • Mohamed, S.A., 2019. Application of satellite image processing and GIS-Spatial modeling for mapping urban areas prone to flash floods in Qena governorate, Egypt. Journal of African Earth Sciences, 158, 103507.
  • MPGM, 2015. 1/100.000 ölçekli çevre düzeni planı haritası, Çevre ve Şehircilik Bakanlığı Mekânsal Planlama Genel Müdürlüğü, Ankara.
  • MTA, 2005. Çalışma alanına ait 1/25.000 ölçekli sayısal jeoloji haritası, Maden ve Tetkik Arama Genel Müdürlüğü, Ankara.
  • Oğuz, K., Oğuz, E., Coşkun. M., 2016. Coğrafi Bilgi Sistemleri ile taşkın risk alanlarının belirlenmesi: Artvin ili örneği. 4. Ulusal Taşkın Sempozyumu, 23– 25 Kasım 2016, Recep Tayyip Erdoğan Üniversitesi, Rize.
  • Oğuz, E., Oğuz, K., Öztürk, K., 2022. Düzce bölgesi taşkın duyarlılık alanlarının belirlenmesi. Geomatik, 7(3), 220-234.
  • Oğuz, K., Akın, B.S., 2019. Doğu Akdeniz Havzası’nda Sıcaklık, Yağış ve Aerosol Değişiminin İncelenmesi. Mühendislik Bilimleri ve Tasarım Dergisi, 7(2), 244-253.
  • Özcan, O., 2017. Taşkın tespitinin farklı yöntemlerle değerlendirilmesi: Ayamama Deresi örneği. Doğal Afetler ve Çevre Dergisi, 3(1), 9-27.
  • Orencio, P.M., Fujii, M., 2013. A localized disaster-resilience index to assess coastal communities based on an analytic hierarchy process (AHP). Int. J. Disast. Risk. Re., 3, 62–75.
  • Ouma, Y.O., Tateishi, R., 2014. Urban flood vulnerability and risk mapping using integrated multi-parametric AHP and GIS: methodological overview and case study assessment. Water, 6(6), 1515-1545.
  • Paquette, J., Lowry, J., 2012. Flood hazard modelling and risk assessment in the Nadi River Basin, Fiji, using GIS and MCDA. South Pacific J Nat Appl Sci., 30, 3343.
  • Radwan, F., Alazba, A.A., Mossad, A., 2019. Flood risk assessment and mapping using AHP in arid and semiarid regions. Acta Geophysica, 67(1), 215-229.
  • Rahmati, O., Zeinivand, H., Besharat, M., 2016. Flood hazard zoning in Yasooj region, Iran, using GIS and multi-criteria decision analysis. Geomatics, Natural Hazards and Risk, 7(3), 1000-1017.
  • Ramkar, P., Yadav, S.M., 2021. Flood risk index in data-scarce river basins using the AHP and GIS approach. Natural Hazards, 109(1), 1119-1140.
  • Razavi A., 2008. Principles of determining the boundary water resources. 1st Edition, Publishers of Power and Water University of Tehran, Iran.
  • Saaty, T., 1980. The Analytic Hierarchy Process. McGrawHill, New York.
  • Safaripour, M., Monavari, M., Zare, M., Abedi, Z., Gharagozlou, A., 2012. Flood risk assessment using GIS (case study: Golestan province, Iran). Pol. J. Environ. Stud., 21, 1817–1824.
  • Scheuer, S., Haase, D., Meyer, V., 2011. Exploring multicriteria flood vulnerability by integrating economic, social and ecological dimensions of flood risk and coping capacity: from a starting point view towards an end point view of vulnerability. Nat Hazards, 58, 731-751.
  • Sener, S., Sener, E., Nas, B., 2011. Selection of Landfill Site using GIS and Multicriteria Decision Analysis for Beyşehir Lake Catchment area (Konya, Turkey). Mühendislik Bilimleri ve Tasarım Dergisi, 1(3), 134-144.
  • Sengun, M.T., Karadeniz, E., Saman, B., 2019. Tavşanlı Deresinde (Sivas-Hafik) taşkın risk analizi. 1st Istanbul International Geography Congress Proceedings Book: Istanbul University Press, İstanbul, Türkiye, 653-668.
  • Shahabi, H., Keihanfard, S., Ahmad, B.B., Amiri, M.J.T., 2014. Evaluating Boolean, AHP and WLC methods for the selection of waste landfill sites using GIS and satellite images. Environmental Earth Sciences, 71(9), 4221-4233.
  • SMİM, 2020. Çalışma alanına ait 1970-2020 yılları arasındaki yağış verileri, Sivas Meteoroloji İl Müdürlüğü, Sivas.
  • Solin, L., 2012. Spatial variability in the flood vulnerability of urban areas in the headwater basins of Slovakia. Flood Risk Manag., 5(4), 303-320.
  • Souissi, D., Zouhri, L., Hammami, S., Msaddek, M. H., Zghibi, A., Dlala, M., 2020. GIS-based MCDM–AHP modeling for flood susceptibility mapping of arid areas, southeastern Tunisia. Geocarto International, 35(9), 991-1017.
  • Sözer, B., Kocaman, S., Nefeslioglu, H. A., Firat, O., Gokceoglu, C., 2018. Preliminary investigations on flood susceptibility mapping in Ankara (Turkey) using modified analytical hierarchy process (M-AHP). The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-5, ISPRS TC V Mid-term Symposium “Geospatial Technology – Pixel to People”, 20–23 November 2018, Dehradun, India.
  • Stieglitz, M., Rind, D., Famiglietti, J., Rosenzweig, C., 1997. An efficient approach to modeling the topographic control of surface hydrology for regional and global climate modeling. J. Clim., 10, 118–137.
  • Swain, K. C., Singha, C., Nayak, L., 2020. Flood susceptibility mapping through the GIS-AHP technique using the cloud. ISPRS International Journal of Geo-Information, 9(12), 720.
  • Tella, A., Balogun, A. L., 2020. Ensemble fuzzy MCDM for spatial assessment of flood susceptibility in Ibadan, Nigeria. Natural Hazards, 104(3), 2277-2306.
  • Tokgözlü, A., Özkan, E., 2018. Taşkın risk haritalarinda AHP yönteminin uygulanması: Aksu Çayı Havzası örneği. Süleyman Demirel Üniversitesi Fen-Edebiyat Fakültesi Sosyal Bilimler Dergisi, (44), 151-176.
  • Topdağ, B., 2003. Sivas ili dolayının sel ve taşkınlar açısından incelenmesi ve alınması gereken önlemler. Yüksek Lisans Tezi, Cumhuriyet Üniversitesi, Fen Bilimleri Enstitüsü, Sivas.
  • Tüzgen, G. A., Karaca, Ö., 2021. Çerçi ve Murt Deresi (Fethiye-Muğla) taşkın duyarlılık alanlarının CBS ile çok kriterli karar verme analizi kullanılarak haritalanması. Yerbilimleri, , 42(1), 121-143.
  • URL-1. https://www.afad.gov.tr/kurumlar/afad.gov.tr/e_kutuphane/kurumsal-raporlar/afet_istatistikleri_2020_web.pdf.
  • Veerbeek, W., Zevenbergen, C., 2009. Deconstructing urban flood damages: increasing the expressiveness of flood damage models combining a high level of detail with a broad attribute set. Flood Risk Manag., 2, 4557.
  • Wang, J.J., 2013. The empirical study of flood risk maps to cultural heritages in Taiwan. Int. J. Chem. Environ. Biol. Sci., 1, 135–139.
  • Yal, G., Akgün, H., 2013. Landfill site selection and landfill liner design for Ankara, Turkey. Environ Earth Sci., 70, 2729–2752.
  • Zaharia, L., Costache, R., Prăvălie, R., Ioana-Toroimac, G., 2017. Mapping flood and flooding potential indices: a methodological approach to identifying areas susceptible to flood and flooding risk. Case study: the Prahova catchment (Romania). Frontiers of Earth Science, 11(2), 229-247.
There are 86 citations in total.

Details

Primary Language Turkish
Journal Section Research Articles
Authors

Can Bülent Karakuş 0000-0002-7373-9960

Şeyma Ceylan 0000-0002-5151-4429

Publication Date December 30, 2022
Submission Date December 28, 2021
Acceptance Date June 30, 2022
Published in Issue Year 2022

Cite

APA Karakuş, C. B., & Ceylan, Ş. (2022). COĞRAFİ BİLGİ SİSTEMİ TABANLI ANALİTİK HİYERARŞİ SÜRECİ KULLANILARAK TAŞKIN TEHLİKE HARİTALAMASI. Mühendislik Bilimleri Ve Tasarım Dergisi, 10(4), 1155-1173. https://doi.org/10.21923/jesd.1049464