Research Article
BibTex RIS Cite

ANALYSIS OF MECHANICAL PROPERTIES OF FLAX/CARBON FIBER REINFORCED HYBRID COMPOSITES PRODUCED USING TWO DIFFERENT PRODUCTION METHODS

Year 2023, , 459 - 473, 28.06.2023
https://doi.org/10.21923/jesd.1130727

Abstract

In this study, the hybridization process of carbon fabrics, which used in many areas today, and flax fabrics were carried out using two production methods, hand lay-up and vacuum bagging. The effects of both the production method and the hybridization process on the mechanical performance of the formed flax/carbon epoxy hybrid composites were investigated. Epoxy was used as a matrix element in production. Tensile and hardness tests were performed to evaluate the mechanical properties of the analyzed composite products. Moreover, the surface morphology of the samples broken after mechanical testing was analyzed using scanning electron microscopy. The experimental results reveal that the tensile strength of flax/carbon fiber hybrid composites increased from 226.36 MPa to 344.14 MPa when vacuum bagging method was used, resulting in an increase of 52.03% compared to hand lay-up method. An increment of 1.09% was achieved in comparison to hand lay-up when the hardness value reached 201.59 HV from 199.42 HV in linen/carbon fiber hybrid composites produced by vacuum bagging method. The results of the study reveal that both production methods are suitable for manufacturing of automotive parts using linen and carbon fiber fabrics, depending on the area to be used and the part to be produced.

References

  • Al-Hajaj, Z., Sy, B. L., Bougherara, H., and Zdero, R., 2019. Impact Properties of a New Hybrid Composite Material Made from Woven Carbon Fibres plus Flax Fibres in an Epoxy Matrix. Composite Structures, 208(October 2018),346–356.
  • Al-Hajaj, Z., Zdero, R., and Bougherara, H., 2018. Mechanical, Morphological, and Water Absorption Properties of a New Hybrid Composite Material Made from 4 Harness Satin Woven Carbon Fibres and Flax Fibres in an Epoxy Matrix. Composites Part A: Applied Science and Manufacturing, 115(March),46–56.
  • Amiri, A., Krosbakken, T., Schoen, W., Theisen, D., and Ulven, C. A., 2018. Design and Manufacturing of a Hybrid Flax/Carbon Fiber Composite Bicycle Frame. Proceedings of the Institution of Mechanical Engineers, Part P: Journal of Sports Engineering and Technology, 232(1),28–38.
  • Assarar, M., Zouari, W., Ayad, R., Kebir, H., and Berthelot, J.-M., 2018. Improving the Damping Properties of Carbon Fibre Reinforced Composites by Interleaving Flax and Viscoelastic Layers. Composites Part B: Engineering, 152(July),248–255.
  • Assarar, M., Zouari, W., Sabhi, H., Ayad, R., and Berthelot, J.-M., 2015. Evaluation of the Damping of Hybrid Carbon–Flax Reinforced Composites. Composite Structures, 132,148–154.
  • ASTM D3039/D3039-M, 2000. Standard Test Method for Tensile Properties of Polymer Matrix Composite Material. West Conshohocken, United States.
  • ASTM E92-17, 2017. Standard Test Methods for Vickers Hardness and Knoop Hardness of Metallic Materials. West Conshohocken, United States.
  • Bachmann, J., Wiedemann, M., and Wierach, P., 2018. Flexural Mechanical Properties of Hybrid Epoxy Composites Reinforced with Nonwoven Made of Flax Fibres and Recycled Carbon Fibres. Aerospace, 5(4),107.
  • Bahrami, M., Enciso, B., Gaifami, C. M., Abenojar, J., and Martinez, M. A., 2021. Characterization of Hybrid Biocomposite Poly-Butyl-Succinate/Carbon Fibers/Flax Fibers. Composites Part B: Engineering, 221,109033.
  • Ben Ameur, M., El Mahi, A., Rebiere, J.-L., Gimenez, I., Beyaoui, M., Abdennadher, M., and Haddar, M., 2019. Investigation and Identification of Damage Mechanisms of Unidirectional Carbon/Flax Hybrid Composites Using Acoustic Emission. Engineering Fracture Mechanics, 216(June),106511.
  • Campbell, F. C., 2010. Structural Composite Materials Geostatistics. ASM International.
  • Chapman, M., and Dhakal, H. N., 2019. Effects of Hybridisation on the Low Velocity Falling Weight Impact and Flexural Properties of Flax-Carbon/Epoxy Hybrid Composites. Fibers, 7(11),95.
  • Cheng, M., Zhong, Y., Kureemun, U., Cao, D., Hu, H., Lee, H. P., and Li, S., 2020. Environmental Durability of Carbon/Flax Fiber Hybrid Composites. Composite Structures, 234(November 2019),111719.
  • Dhakal, H. N., Zhang, Z. Y., Guthrie, R., MacMullen, J., and Bennett, N., 2013. Development of Flax/Carbon Fibre Hybrid Composites for Enhanced Properties. Carbohydrate Polymers, 96(1),1–8.
  • Dhakal, Hom Nath, and Sain, M., 2020. Enhancement of Mechanical Properties of Flax-Epoxy Composite with Carbon Fibre Hybridisation for Lightweight Applications. Materials, 13(1),109.
  • Fairlie, G., and Njuguna, J., 2020. Damping Properties of Flax / Carbon Hybrid. Fibers, 8(10),64.
  • Fehri, M., Ragueh, R. R., Vivet, A., Dammak, F., and Haddar, M., 2017. Improvement of Natural Fiber Composite Materials by Carbon Fibers. Journal of Renewable Materials, 5(1),38–47.
  • Fiore, V., Valenza, A., and Di Bella, G., 2012. Mechanical Behavior of Carbon/Flax Hybrid Composites for Structural Applications. Journal of Composite Materials, 46(17),2089–2096.
  • Flynn, J., Amiri, A., and Ulven, C., 2016. Hybridized Carbon and Flax Fiber Composites for Tailored Performance. Materials and Design, 102,21–29.
  • Hoekstra, B., Shekarian, A., Kolasangiani, K., Oguamanam, D. C. D., Zitoune, R., and Bougherara, H., 2022. Effect of Machining Processes on the Damage Response and Surface Quality of Open Hole Hybrid Carbon/Flax Composites: An Experimental Study. Composite Structures, 285(September 2021),115244.
  • Islam, M. Z., Amiri, A., and Ulven, C. A., 2021. Fatigue Behavior Comparison of Inter-Ply and Intra-Ply Hybrid Flax-Carbon Fiber Reinforced Polymer Matrix Composites. Journal of Composites Science, 5(7),184.
  • Kompozitshop, 2022. Epoxy and Hardener. Retrieved from https://www.kompozitshop.com/epoksi-recine-ve-sertlestirici.
  • Kompozitshop, 2022. Technical Properties of 245 3k Twill Carbon Fiber. Retrieved from https://www.kompozitshop.com/karbon-fiber-kumas-245-grm2-3k-twill.
  • Kumascı.com, 2022. Technical Properties of Flax. Retrieved from https://www.kumasci.com/urun/ham-keten-naturel-kumas/7372.
  • Kureemun, U., Haris, A., Teo, W. S., Tran, L. Q. N., and Lee, H. P., 2018. Influence of Ply Blocking on Tensile Stiffness in Woven Flax–Carbon Hybrids. Journal of Reinforced Plastics and Composites, 37(9),583–591.
  • Kureemun, Umeyr, Ravandi, M., Tran, L. Q. N., Teo, W. S., Tay, T. E., and Lee, H. P., 2018. Effects of Hybridization and Hybrid Fibre Dispersion on the Mechanical Properties of Woven Flax-Carbon Epoxy at Low Carbon Fibre Volume Fractions. Composites Part B: Engineering, 134,28–38.
  • Le Guen, M. J., Newman, R. H., Fernyhough, A., Emms, G. W., and Staiger, M. P., 2016. The Damping-Modulus Relationship in Flax-Carbon Fibre Hybrid Composites. Composites Part B: Engineering, 89,27–33.
  • Lee, D. G., and Suh, N. P., 2006. Axiomatic Design and Fabrication of Composite Structures: Applications in Robots, Machine Tools, and Automobiles. OXFORD university press.
  • Lee, H. P., Kureemun, U., Ravandi, M., and Teo, W. S., 2020. Performance of Interlaminar Flax-Carbon Hybrids under Bending. Procedia Manufacturing, 43,658–665.
  • Muralidhar, B. A., 2013. Study of Flax Hybrid Preforms Reinforced Epoxy Composites. Materials & Design (1980-2015), 52,835–840.
  • Prakash, R. V., and Maharana, M., 2017. Damage Detection Using Infrared Thermography in a Carbon-Flax Fiber Hybrid Composite. Procedia Structural Integrity, 7,283–290.
  • Rahman, M. Z., 2021. Mechanical and Damping Performances of Flax Fibre Composites – A Review. Composites Part C: Open Access, 4,100081.
  • Sarasini, F., Tirillò, J., D’Altilia, S., Valente, T., Santulli, C., Touchard, F., Chocinski-Arnault, L., Mellier, D., Lampani, L., Gaudenzi, P., 2016. Damage Tolerance of Carbon/Flax Hybrid Composites Subjected to Low Velocity Impact. Composites Part B: Engineering, 91,144–153.
  • Shamsuyeva, M., Hansen, O., and Endres, H.-J., 2019. Review on Hybrid Carbon/Flax Composites and Their Properties. International Journal of Polymer Science, 2019,1–17.
  • Wang, A., Wang, X., and Xian, G., 2020. Mechanical, Low-Velocity Impact, and Hydrothermal Aging Properties of Flax/Carbon Hybrid Composite Plates. Polymer Testing, 90(February),106759.
  • Wang, A., Wang, X., and Xian, G., 2021. The Influence of Stacking Sequence on the Low-Velocity Impact Response and Damping Behavior of Carbon and Flax Fabric Reinforced Hybrid Composites. Polymer Testing, 104,107384.
  • Wang, Y., Zhu, W., Wan, B., Meng, Z., and Han, B., 2021. Hygrothermal Ageing Behavior and Mechanism of Carbon Nanofibers Modified Flax Fiber-Reinforced Epoxy Laminates. Composites Part A: Applied Science and Manufacturing, 140(June 2020),106142.
  • Yuan, W., Li, Y., and Zhao, J., 2021. Mechanical Properties of a Novel Tri-Directional Carbon-Flax-Aramid Fiber Reinforced Composite. Composites Science and Technology, 213(April),108923.

İKİ FARKLI ÜRETİM YÖNTEMİ İLE ÜRETİLEN KETEN/KARBON LİF TAKVİYELİ HİBRİT KOMPOZİTLERİN MEKANİK ANALİZİ

Year 2023, , 459 - 473, 28.06.2023
https://doi.org/10.21923/jesd.1130727

Abstract

Bu çalışmada, günümüzde birçok alanda kullanılan karbon kumaşlar ile keten kumaşların hibridizasyon işlemi, elle yatırma ve vakum torbalama olmak üzere iki üretim yöntemi kullanılarak gerçekleştirilmiştir. Hem üretim yönteminin hem de hibridizasyon işleminin, oluşturulan keten/karbon epoksi hibrit kompozitlerin mekanik performansı üzerindeki etkileri araştırılmıştır. Üretimde matris elemanı olarak epoksi kullanılmıştır. Analizi yapılan kompozit ürünlerin mekanik özelliklerini değerlendirmek için çekme ve sertlik testleri yapılmıştır. Ayrıca mekanik testlerden sonra kırılan numunelerin yüzey morfolojisi taramalı elektron mikroskobu kullanılarak analiz edilmiştir. Deneysel sonuçlar, keten/karbon fiber hibrit kompozitlerin çekme mukavemetinin vakum torbalama yöntemi kullanıldığında 226.36 MPa' dan 344.14 MPa' ya yükseldiğini ve elle yatırma yöntemine göre %52.03'lük bir artışa neden olduğunu ortaya koymaktadır. Vakum torbalama yöntemi ile üretilen keten/karbon fiber hibrit kompozitlerde sertlik değeri 199,42 HV' den 201,59 HV' ye ulaştığında elle yatırmaya göre %1,09 artış sağlanmıştır. Çalışmanın sonuçları, kullanılacak alana ve üretilecek parçaya bağlı olarak, her iki üretim yönteminin de keten ve karbon elyaf kumaşlar kullanılarak otomotiv parçalarının imalatına uygun olduğunu ortaya koymaktadır.

References

  • Al-Hajaj, Z., Sy, B. L., Bougherara, H., and Zdero, R., 2019. Impact Properties of a New Hybrid Composite Material Made from Woven Carbon Fibres plus Flax Fibres in an Epoxy Matrix. Composite Structures, 208(October 2018),346–356.
  • Al-Hajaj, Z., Zdero, R., and Bougherara, H., 2018. Mechanical, Morphological, and Water Absorption Properties of a New Hybrid Composite Material Made from 4 Harness Satin Woven Carbon Fibres and Flax Fibres in an Epoxy Matrix. Composites Part A: Applied Science and Manufacturing, 115(March),46–56.
  • Amiri, A., Krosbakken, T., Schoen, W., Theisen, D., and Ulven, C. A., 2018. Design and Manufacturing of a Hybrid Flax/Carbon Fiber Composite Bicycle Frame. Proceedings of the Institution of Mechanical Engineers, Part P: Journal of Sports Engineering and Technology, 232(1),28–38.
  • Assarar, M., Zouari, W., Ayad, R., Kebir, H., and Berthelot, J.-M., 2018. Improving the Damping Properties of Carbon Fibre Reinforced Composites by Interleaving Flax and Viscoelastic Layers. Composites Part B: Engineering, 152(July),248–255.
  • Assarar, M., Zouari, W., Sabhi, H., Ayad, R., and Berthelot, J.-M., 2015. Evaluation of the Damping of Hybrid Carbon–Flax Reinforced Composites. Composite Structures, 132,148–154.
  • ASTM D3039/D3039-M, 2000. Standard Test Method for Tensile Properties of Polymer Matrix Composite Material. West Conshohocken, United States.
  • ASTM E92-17, 2017. Standard Test Methods for Vickers Hardness and Knoop Hardness of Metallic Materials. West Conshohocken, United States.
  • Bachmann, J., Wiedemann, M., and Wierach, P., 2018. Flexural Mechanical Properties of Hybrid Epoxy Composites Reinforced with Nonwoven Made of Flax Fibres and Recycled Carbon Fibres. Aerospace, 5(4),107.
  • Bahrami, M., Enciso, B., Gaifami, C. M., Abenojar, J., and Martinez, M. A., 2021. Characterization of Hybrid Biocomposite Poly-Butyl-Succinate/Carbon Fibers/Flax Fibers. Composites Part B: Engineering, 221,109033.
  • Ben Ameur, M., El Mahi, A., Rebiere, J.-L., Gimenez, I., Beyaoui, M., Abdennadher, M., and Haddar, M., 2019. Investigation and Identification of Damage Mechanisms of Unidirectional Carbon/Flax Hybrid Composites Using Acoustic Emission. Engineering Fracture Mechanics, 216(June),106511.
  • Campbell, F. C., 2010. Structural Composite Materials Geostatistics. ASM International.
  • Chapman, M., and Dhakal, H. N., 2019. Effects of Hybridisation on the Low Velocity Falling Weight Impact and Flexural Properties of Flax-Carbon/Epoxy Hybrid Composites. Fibers, 7(11),95.
  • Cheng, M., Zhong, Y., Kureemun, U., Cao, D., Hu, H., Lee, H. P., and Li, S., 2020. Environmental Durability of Carbon/Flax Fiber Hybrid Composites. Composite Structures, 234(November 2019),111719.
  • Dhakal, H. N., Zhang, Z. Y., Guthrie, R., MacMullen, J., and Bennett, N., 2013. Development of Flax/Carbon Fibre Hybrid Composites for Enhanced Properties. Carbohydrate Polymers, 96(1),1–8.
  • Dhakal, Hom Nath, and Sain, M., 2020. Enhancement of Mechanical Properties of Flax-Epoxy Composite with Carbon Fibre Hybridisation for Lightweight Applications. Materials, 13(1),109.
  • Fairlie, G., and Njuguna, J., 2020. Damping Properties of Flax / Carbon Hybrid. Fibers, 8(10),64.
  • Fehri, M., Ragueh, R. R., Vivet, A., Dammak, F., and Haddar, M., 2017. Improvement of Natural Fiber Composite Materials by Carbon Fibers. Journal of Renewable Materials, 5(1),38–47.
  • Fiore, V., Valenza, A., and Di Bella, G., 2012. Mechanical Behavior of Carbon/Flax Hybrid Composites for Structural Applications. Journal of Composite Materials, 46(17),2089–2096.
  • Flynn, J., Amiri, A., and Ulven, C., 2016. Hybridized Carbon and Flax Fiber Composites for Tailored Performance. Materials and Design, 102,21–29.
  • Hoekstra, B., Shekarian, A., Kolasangiani, K., Oguamanam, D. C. D., Zitoune, R., and Bougherara, H., 2022. Effect of Machining Processes on the Damage Response and Surface Quality of Open Hole Hybrid Carbon/Flax Composites: An Experimental Study. Composite Structures, 285(September 2021),115244.
  • Islam, M. Z., Amiri, A., and Ulven, C. A., 2021. Fatigue Behavior Comparison of Inter-Ply and Intra-Ply Hybrid Flax-Carbon Fiber Reinforced Polymer Matrix Composites. Journal of Composites Science, 5(7),184.
  • Kompozitshop, 2022. Epoxy and Hardener. Retrieved from https://www.kompozitshop.com/epoksi-recine-ve-sertlestirici.
  • Kompozitshop, 2022. Technical Properties of 245 3k Twill Carbon Fiber. Retrieved from https://www.kompozitshop.com/karbon-fiber-kumas-245-grm2-3k-twill.
  • Kumascı.com, 2022. Technical Properties of Flax. Retrieved from https://www.kumasci.com/urun/ham-keten-naturel-kumas/7372.
  • Kureemun, U., Haris, A., Teo, W. S., Tran, L. Q. N., and Lee, H. P., 2018. Influence of Ply Blocking on Tensile Stiffness in Woven Flax–Carbon Hybrids. Journal of Reinforced Plastics and Composites, 37(9),583–591.
  • Kureemun, Umeyr, Ravandi, M., Tran, L. Q. N., Teo, W. S., Tay, T. E., and Lee, H. P., 2018. Effects of Hybridization and Hybrid Fibre Dispersion on the Mechanical Properties of Woven Flax-Carbon Epoxy at Low Carbon Fibre Volume Fractions. Composites Part B: Engineering, 134,28–38.
  • Le Guen, M. J., Newman, R. H., Fernyhough, A., Emms, G. W., and Staiger, M. P., 2016. The Damping-Modulus Relationship in Flax-Carbon Fibre Hybrid Composites. Composites Part B: Engineering, 89,27–33.
  • Lee, D. G., and Suh, N. P., 2006. Axiomatic Design and Fabrication of Composite Structures: Applications in Robots, Machine Tools, and Automobiles. OXFORD university press.
  • Lee, H. P., Kureemun, U., Ravandi, M., and Teo, W. S., 2020. Performance of Interlaminar Flax-Carbon Hybrids under Bending. Procedia Manufacturing, 43,658–665.
  • Muralidhar, B. A., 2013. Study of Flax Hybrid Preforms Reinforced Epoxy Composites. Materials & Design (1980-2015), 52,835–840.
  • Prakash, R. V., and Maharana, M., 2017. Damage Detection Using Infrared Thermography in a Carbon-Flax Fiber Hybrid Composite. Procedia Structural Integrity, 7,283–290.
  • Rahman, M. Z., 2021. Mechanical and Damping Performances of Flax Fibre Composites – A Review. Composites Part C: Open Access, 4,100081.
  • Sarasini, F., Tirillò, J., D’Altilia, S., Valente, T., Santulli, C., Touchard, F., Chocinski-Arnault, L., Mellier, D., Lampani, L., Gaudenzi, P., 2016. Damage Tolerance of Carbon/Flax Hybrid Composites Subjected to Low Velocity Impact. Composites Part B: Engineering, 91,144–153.
  • Shamsuyeva, M., Hansen, O., and Endres, H.-J., 2019. Review on Hybrid Carbon/Flax Composites and Their Properties. International Journal of Polymer Science, 2019,1–17.
  • Wang, A., Wang, X., and Xian, G., 2020. Mechanical, Low-Velocity Impact, and Hydrothermal Aging Properties of Flax/Carbon Hybrid Composite Plates. Polymer Testing, 90(February),106759.
  • Wang, A., Wang, X., and Xian, G., 2021. The Influence of Stacking Sequence on the Low-Velocity Impact Response and Damping Behavior of Carbon and Flax Fabric Reinforced Hybrid Composites. Polymer Testing, 104,107384.
  • Wang, Y., Zhu, W., Wan, B., Meng, Z., and Han, B., 2021. Hygrothermal Ageing Behavior and Mechanism of Carbon Nanofibers Modified Flax Fiber-Reinforced Epoxy Laminates. Composites Part A: Applied Science and Manufacturing, 140(June 2020),106142.
  • Yuan, W., Li, Y., and Zhao, J., 2021. Mechanical Properties of a Novel Tri-Directional Carbon-Flax-Aramid Fiber Reinforced Composite. Composites Science and Technology, 213(April),108923.
There are 38 citations in total.

Details

Primary Language English
Journal Section Research Articles
Authors

Berkay Karacor 0000-0001-5208-366X

Mustafa Özcanlı 0000-0001-6088-2912

Publication Date June 28, 2023
Submission Date June 14, 2022
Acceptance Date December 20, 2022
Published in Issue Year 2023

Cite

APA Karacor, B., & Özcanlı, M. (2023). ANALYSIS OF MECHANICAL PROPERTIES OF FLAX/CARBON FIBER REINFORCED HYBRID COMPOSITES PRODUCED USING TWO DIFFERENT PRODUCTION METHODS. Mühendislik Bilimleri Ve Tasarım Dergisi, 11(2), 459-473. https://doi.org/10.21923/jesd.1130727