Research Article
BibTex RIS Cite

DESIGN OPTIMIZATION OF LOW NOISE AMPLIFIER FOR 900MHZ GSM BAND APPLICATIONS USING GREY WOLF ALGORITHM

Year 2023, , 873 - 879, 28.09.2023
https://doi.org/10.21923/jesd.1246889

Abstract

In this work, the design of a high-performance single-stage Low Noise Amplifier (LNA) for GSM applications is taken into consideration. LNA design is one of the key stages of a wireless communication system due to its dominance over the whole system's noise figure performance. Although it is possible to achieve a very high gain and low noise figure with the usage of multi-stage transistors, such designs would also have a high complexity and manufacturing cost. The main aim of this work is to propose a single transistor LNA design for GSM application with a gain level of 14.3 dB, return loss level of less than 15 dB, and noise figure of 1.8 dB over the operation band of 820-980 MHz. the optimal design variables of the model is obtained via Grey Wolf optimization procedure.

References

  • Akyildiz, I. F., Su, W., Sankarasubramaniam, Y., and Cayirci, E.,2002. Wireless Sensor Networks-A Survey”, Elsevier Computer Networks, 38:393-422.
  • Alaybeyoğlu, A., Kantarcı, A., and Erciyes, K., 2009. Telsiz Duyarga Ağlarında Hedef İzleme Senaryoları, Akademik Bilişim 2009 konferansı, Harran Üniversitesi, Şanlıurfa.
  • Belen, A. “WLAN Uygulamaları için Düşük Gürültülü Kuvvetlendirici Tasarımı, Avrupa Bilim ve Teknoloji Dergisi, 2021, (25): 665-668.
  • Belostotski, L., Klumperink, E. A. M., Figures of Merit for CMOS Low-Noise Amplifiers and Estimates for Their Theoretical Limits. IEEE transactions on circuits and systems II: express briefs, 2022, 69(3), 734-738.
  • Chang, W. L., Analytical noise optimization of single-/dual-band MOS LNAs with substrate and metal loss effects of inductors, IEEE Transactions on Circuits and Systems I: Regular Papers, 2019, 66(7): 2454-2467.
  • Chen, Hao-Hui, Ming-Huei Chen, and Cheng-Yu Tsai. "Optimization of low noise amplifier designs by genetic algorithms." In 2013 International Symposium on Electromagnetic Theory, pp. 493-496. IEEE, 2013.
  • Çalışkan, A., Kızılay, A., Belen, M., Mahouti, P., 2019. ISM Band Haberleşme Uygulamaları İçin Origami Anten Tasarımı . Avrupa Bilim ve Teknoloji Dergisi, 2019(16): 785-791.
  • Danacı, H, Palandöken, M., 2020. A Novel Electronically Reconfigurable Antenna Design for RFID and GSM 900 MHz Applications, Avrupa Bilim ve Teknoloji Dergisi , Ejosat Özel Sayı 2020 (ICCEES), 304-307.
  • Demirel, S., Güneş, F., and Mahouti, P., Adjoint sensitivity analysis of the T, Π, and L types of microstripline low noise amplifiers, Int. J. Numer. Model., 2017, 30.
  • Doddamani, N. D., Nandi, A. V., and Chandra, H.,2007. Design of SPDT Switch, 6 Bit Digital Attenuator, 6 Bit Digital Phase Shifter for L-Band T/R Module using 0.7 uM GaAs MMIC Technology, International Conference on Signal Processing, Communications and Networking, 2007, 302 – 307.
  • Esame, O., Kaynak, M., Kavlak, C., Bozkurt, A., Tekin, I., and Gürbüz, Y., 2006.IEEE 802.11a Standard Uyumlu, RF Alıcı-Verici Alt-Blok Devrelerinin Gerçeklenmesi, URSI, Hacettepe Üniversitesi, 2006.
  • Hashemi, H., and Hajimiri, A., 2002. Concurrent Multi-Band Low- Noise Amplifiers Theory, Design and Applications, IEEE Trans. Microwave Theory and Techniques, 50(1): 288-301.
  • Hove, C., and Faaborg, J., 2004. 0.35 μm CMOS T/R Switch for 2.4 GHz Short Range Wireless Applications, Analog Integrated Circuits and Signal Processing, 2004,38: 35-42.
  • https://www.infineon.com/cms/en/product/rf-wireless-control/rf-transistor/ultra-low-noise-sigec-transistors-for-use-up-to-12-ghz/bfp720/
  • Ke, Z., Mou, S., Ma, K., and Meng, F., A 0.7/1.1-dB ultra-low noise dual-band LNA based on SISL platform, IEEE Transactions on Microwave Theory and Techniques, 2018, 66(10): 4576-4584.
  • Kiani, Farzad, Amir Seyyedabbasi, and Peyman Mahouti. "Optimal characterization of a microwave transistor using grey wolf algorithms." Analog Integrated Circuits and Signal Processing 109 (2021): 599-609.
  • Khosravi, H., Zandian, S., Bijari, A., and Kandalaft, N., “A low power, high gain 2.4/5.2 GHz concurrent dual-band low noise amplifier,” 2019 IEEE 9th Annual Computing and Communication Workshop and Conference (CCWC), 2019, 0788-0792.
  • Kluge, W., Dathe, L., Jaehne, R., Ehrenreich, S., Eggert, D.,2003 .A 2.4GHz CMOS Transceiver for 802.11b Wireless LANs, IEEE ISSCC Dig. Tech. Papers, 360–361.
  • Koçer, M., Aydemir, M., 2020. Microstrip Patch Antenna Design for Military Satellite Communication . Avrupa Bilim ve Teknoloji Dergisi , Ejosat Özel Sayı, 142-147.
  • Kumar, A. A., Dutta, A., and Sahoo, B. D., A Low-Power Reconfigurable Narrowband/Wideband LNA for Cognitive Radio-Wireless Sensor Network, IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2019, 28(1): 212-223.
  • Mahouti, P. , Güneş F. and Demirel, S., Honey bees mating algorithm applied to feasible design target space for a wide- band front- end amplifier, 2012 IEEE International Conference on Ultra-Wideband, 2012, 251-255.
  • Pozar, D. M., 1998. John Wiley&Wiley, Microwave Engineering.
  • Roobert, A. A., and Rani, D. G. N., Design and analysis of 0.9 and 2.3‐GHz concurrent dual‐band CMOS LNA for mobile communication, International Journal of Circuit Theory and Applications, 2020, 48(1): 1-14.
  • Rohde, U. L. 2000. John Wiley&Sons, RF/Microwave Circuit Design for Wireless Applications, Inc.
  • Seyyedabbasi, Amir, Farzad Kiani, Tofigh Allahviranloo, Unai Fernandez-Gamiz, and Samad Noeiaghdam. "Optimal data transmission and pathfinding for WSN and decentralized IoT systems using I-GWO and Ex-GWO algorithms." Alexandria Engineering Journal 63 (2023): 339-357.
  • Stece, C., 1999. RF Power Amplifiers for Wireless Communications, Artech House.
  • Ulker, Sadik. "Design of low noise amplifiers using particle swarm optimization." arXiv preprint arXiv:1208.6028 (2012).
  • Dai, Shuyu, Dongxiao Niu, and Yan Li. "Daily peak load forecasting based on complete ensemble empirical mode decomposition with adaptive noise and support vector machine optimized by modified grey wolf optimization algorithm." Energies 11, no. 1 (2018): 163.
  • Ahmed, Hemn Unis, Reham R. Mostafa, Ahmed Mohammed, Parveen Sihag, and Azad Qadir. "Support vector regression (SVR) and grey wolf optimization (GWO) to predict the compressive strength of GGBFS-based geopolymer concrete." Neural Computing and Applications 35, no. 3 (2023): 2909-2926.
  • Singh, Shitu, and Jagdish Chand Bansal. "Mutation-driven grey wolf optimizer with modified search mechanism." Expert Systems with Applications 194 (2022): 116450.

GRİ KURT ALGORİTMASI İLE 900 MHZ GSM BANT UYGULAMALARI İÇİN DÜŞÜK GÜRÜLTÜLÜ KUVVETLENDİRİCİ TASARIM OPTİMİZASYONU

Year 2023, , 873 - 879, 28.09.2023
https://doi.org/10.21923/jesd.1246889

Abstract

Bu çalışmada GSM uygulamalarına yönelik, yüksek performanslı bir düşük gürültülü kuvvetlendirici (DGK) tasarımı ele alınmıştır. Toplam sistemin gürültüsüne olan baskın etkisinden dolayı, DGK kablosuz haberleşme sistemlerinin anahtar elemanlarından biridir. Her ne kadar da birden çok transistor elemanı ve kat yapısı kullanılarak çok yüksek kazanç ve düşük gürültü karakteristiği elde edile biliniyor ise de, bu yöntem toplam tasarım karmaşıklığını ve üretim maliyetini ciddi bir şekilde etkilemektedir. Bu çalışma kapsamında, tek bir transistor elemanı kullanılarak 14.3 dB kazanç, 15 dB den düşük geri donuş kaybı ve 1.8 dB seviyesinde gürültü karakteristiği gösteren GSM 820-980 MHz uygulamalarına uygun bir tasarım önermektir.

References

  • Akyildiz, I. F., Su, W., Sankarasubramaniam, Y., and Cayirci, E.,2002. Wireless Sensor Networks-A Survey”, Elsevier Computer Networks, 38:393-422.
  • Alaybeyoğlu, A., Kantarcı, A., and Erciyes, K., 2009. Telsiz Duyarga Ağlarında Hedef İzleme Senaryoları, Akademik Bilişim 2009 konferansı, Harran Üniversitesi, Şanlıurfa.
  • Belen, A. “WLAN Uygulamaları için Düşük Gürültülü Kuvvetlendirici Tasarımı, Avrupa Bilim ve Teknoloji Dergisi, 2021, (25): 665-668.
  • Belostotski, L., Klumperink, E. A. M., Figures of Merit for CMOS Low-Noise Amplifiers and Estimates for Their Theoretical Limits. IEEE transactions on circuits and systems II: express briefs, 2022, 69(3), 734-738.
  • Chang, W. L., Analytical noise optimization of single-/dual-band MOS LNAs with substrate and metal loss effects of inductors, IEEE Transactions on Circuits and Systems I: Regular Papers, 2019, 66(7): 2454-2467.
  • Chen, Hao-Hui, Ming-Huei Chen, and Cheng-Yu Tsai. "Optimization of low noise amplifier designs by genetic algorithms." In 2013 International Symposium on Electromagnetic Theory, pp. 493-496. IEEE, 2013.
  • Çalışkan, A., Kızılay, A., Belen, M., Mahouti, P., 2019. ISM Band Haberleşme Uygulamaları İçin Origami Anten Tasarımı . Avrupa Bilim ve Teknoloji Dergisi, 2019(16): 785-791.
  • Danacı, H, Palandöken, M., 2020. A Novel Electronically Reconfigurable Antenna Design for RFID and GSM 900 MHz Applications, Avrupa Bilim ve Teknoloji Dergisi , Ejosat Özel Sayı 2020 (ICCEES), 304-307.
  • Demirel, S., Güneş, F., and Mahouti, P., Adjoint sensitivity analysis of the T, Π, and L types of microstripline low noise amplifiers, Int. J. Numer. Model., 2017, 30.
  • Doddamani, N. D., Nandi, A. V., and Chandra, H.,2007. Design of SPDT Switch, 6 Bit Digital Attenuator, 6 Bit Digital Phase Shifter for L-Band T/R Module using 0.7 uM GaAs MMIC Technology, International Conference on Signal Processing, Communications and Networking, 2007, 302 – 307.
  • Esame, O., Kaynak, M., Kavlak, C., Bozkurt, A., Tekin, I., and Gürbüz, Y., 2006.IEEE 802.11a Standard Uyumlu, RF Alıcı-Verici Alt-Blok Devrelerinin Gerçeklenmesi, URSI, Hacettepe Üniversitesi, 2006.
  • Hashemi, H., and Hajimiri, A., 2002. Concurrent Multi-Band Low- Noise Amplifiers Theory, Design and Applications, IEEE Trans. Microwave Theory and Techniques, 50(1): 288-301.
  • Hove, C., and Faaborg, J., 2004. 0.35 μm CMOS T/R Switch for 2.4 GHz Short Range Wireless Applications, Analog Integrated Circuits and Signal Processing, 2004,38: 35-42.
  • https://www.infineon.com/cms/en/product/rf-wireless-control/rf-transistor/ultra-low-noise-sigec-transistors-for-use-up-to-12-ghz/bfp720/
  • Ke, Z., Mou, S., Ma, K., and Meng, F., A 0.7/1.1-dB ultra-low noise dual-band LNA based on SISL platform, IEEE Transactions on Microwave Theory and Techniques, 2018, 66(10): 4576-4584.
  • Kiani, Farzad, Amir Seyyedabbasi, and Peyman Mahouti. "Optimal characterization of a microwave transistor using grey wolf algorithms." Analog Integrated Circuits and Signal Processing 109 (2021): 599-609.
  • Khosravi, H., Zandian, S., Bijari, A., and Kandalaft, N., “A low power, high gain 2.4/5.2 GHz concurrent dual-band low noise amplifier,” 2019 IEEE 9th Annual Computing and Communication Workshop and Conference (CCWC), 2019, 0788-0792.
  • Kluge, W., Dathe, L., Jaehne, R., Ehrenreich, S., Eggert, D.,2003 .A 2.4GHz CMOS Transceiver for 802.11b Wireless LANs, IEEE ISSCC Dig. Tech. Papers, 360–361.
  • Koçer, M., Aydemir, M., 2020. Microstrip Patch Antenna Design for Military Satellite Communication . Avrupa Bilim ve Teknoloji Dergisi , Ejosat Özel Sayı, 142-147.
  • Kumar, A. A., Dutta, A., and Sahoo, B. D., A Low-Power Reconfigurable Narrowband/Wideband LNA for Cognitive Radio-Wireless Sensor Network, IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2019, 28(1): 212-223.
  • Mahouti, P. , Güneş F. and Demirel, S., Honey bees mating algorithm applied to feasible design target space for a wide- band front- end amplifier, 2012 IEEE International Conference on Ultra-Wideband, 2012, 251-255.
  • Pozar, D. M., 1998. John Wiley&Wiley, Microwave Engineering.
  • Roobert, A. A., and Rani, D. G. N., Design and analysis of 0.9 and 2.3‐GHz concurrent dual‐band CMOS LNA for mobile communication, International Journal of Circuit Theory and Applications, 2020, 48(1): 1-14.
  • Rohde, U. L. 2000. John Wiley&Sons, RF/Microwave Circuit Design for Wireless Applications, Inc.
  • Seyyedabbasi, Amir, Farzad Kiani, Tofigh Allahviranloo, Unai Fernandez-Gamiz, and Samad Noeiaghdam. "Optimal data transmission and pathfinding for WSN and decentralized IoT systems using I-GWO and Ex-GWO algorithms." Alexandria Engineering Journal 63 (2023): 339-357.
  • Stece, C., 1999. RF Power Amplifiers for Wireless Communications, Artech House.
  • Ulker, Sadik. "Design of low noise amplifiers using particle swarm optimization." arXiv preprint arXiv:1208.6028 (2012).
  • Dai, Shuyu, Dongxiao Niu, and Yan Li. "Daily peak load forecasting based on complete ensemble empirical mode decomposition with adaptive noise and support vector machine optimized by modified grey wolf optimization algorithm." Energies 11, no. 1 (2018): 163.
  • Ahmed, Hemn Unis, Reham R. Mostafa, Ahmed Mohammed, Parveen Sihag, and Azad Qadir. "Support vector regression (SVR) and grey wolf optimization (GWO) to predict the compressive strength of GGBFS-based geopolymer concrete." Neural Computing and Applications 35, no. 3 (2023): 2909-2926.
  • Singh, Shitu, and Jagdish Chand Bansal. "Mutation-driven grey wolf optimizer with modified search mechanism." Expert Systems with Applications 194 (2022): 116450.
There are 30 citations in total.

Details

Primary Language English
Subjects Electrical Engineering
Journal Section Research Articles
Authors

Aysu Belen 0000-0001-5038-424X

Publication Date September 28, 2023
Submission Date February 2, 2023
Acceptance Date June 19, 2023
Published in Issue Year 2023

Cite

APA Belen, A. (2023). DESIGN OPTIMIZATION OF LOW NOISE AMPLIFIER FOR 900MHZ GSM BAND APPLICATIONS USING GREY WOLF ALGORITHM. Mühendislik Bilimleri Ve Tasarım Dergisi, 11(3), 873-879. https://doi.org/10.21923/jesd.1246889