Research Article
BibTex RIS Cite

DAĞBELİ KÖYÜ (ANTALYA) GÜNEYİ KİREÇTAŞI AKİFERİNİN HİDROJEOKİMYASAL ÖZELLİKLERİ

Year 2024, , 544 - 556, 26.09.2024
https://doi.org/10.21923/jesd.1520740

Abstract

Dağbeli Köyü (Antalya) güneyindeki kireçtaşı akiferinin hidrojeokimyasal özelliklerinin incelendiği bu çalışmada bölgenin jeolojik ve hidrojeolojik özellikleri, yeraltısularının hidrojeokimyasal karakteri ve buna bağlı olarak kullanılabilirlik durumu ortaya koyulmuştur. Bölgede yüzeyleyen Beydağları formasyonu ve Tekkeköy üyesi karstik akifer özelliği taşımaktadır. Karstik akifer ortamda açılmış sondaj kuyuları ile bölgede karstik akiferden boşalan Kırkgöz kaynaklarından alınan su örneklerinin analiz sonuçlarına göre suların EC değerleri 352-730,3 μS/cm arasında, pH değeri 7.2-8.29 arasında; sertliği ise 25.5-43.2 Fr0 arasında değişmektedir. Yeraltısuları Piper ve Gibbs diyagramlarına göre Ca-HCO3’lı sular fasiyesinde olup bölgede yeraltısuyu kimyasını denetleyen ana faktör kaya-su etkileşimidir. Hidrojeokimyasal proseslere göre sularda Ca, Mg ve HCO3 varlığının karbonat olmayan kaynaklarla ilişkili olduğu ve silikat ayrışmasının baskın olduğu söylenebilir. Yeraltısularının kalite ve kullanılabilirlik özelliklerinin değerlendirilmesi sonucunda tüm su örneklerinin içme ve sulama suyu olarak kullanılabilir özellikle olduğu belirlenmiştir.

References

  • Aghazadeh, N., Mogaddam, A. A., 2011. Investigation of hydrochemical characteristics of groundwater in the Harzandat aquifer, Northwest of Iran. Environmental monitoring and assessment, 176(1), 183-195.
  • Atilla, Ö., 1996. Çok Değişkenli İstatistiksel Analiz Teknikleri Kullanılarak Hidrojeokimyasal Verilerin Değerlendirilmesi, Hacettepe Üniversitesi, Fen Bilimleri Enstitüsü, Yüksek Mühendislik Tezi, Ankara.
  • Back, W., 1966. Hydrochemical Facies and Ground-Water Flow Patterns in Northern Part of Atlantic Coastal Plain, 498-A, 1-42.
  • Bilgin, Z.R., Karaman, T., Öztürk, Z., Şen, M.A., Şenel, M., 1990. Yeşilova-Acıgöl Civarının Jeolojisi Raporu. MTA Raporı, 9071, Ankara.
  • Datta, P.S., Tyagi, S.K., 1996. Major ion Chemistry of Groundwater in Delhi Area: Chemical Weathering Processes and Groundwater Flow Regime. Journal of Geological Society India 47:179–188.
  • Davraz, A., Karaguzel, R., Soyaslan, I., Sener, E., Seyman, F., Sener, S., 2009. Hydrogeology of karst aquifer systems in SW Turkey and an assessment of water quality and contamination problems. Environmental Geology, 58, 973-988. Davraz, A., Batur, B., 2021. Hydrogeochemistry characteristics of groundwater and health risk assessment in Yalvaç–Gelendost basin (Turkey). Applied Water Science, 11(4), 67.
  • Doneen, L.D., 1964. Water Quality for Agriculture. Department of Irrigation, University of Calfornia, Davis, 48.
  • Drew, D., 1999. Introduction. In: Drew D, Hötzl H (eds) Karst hydrogeology and human activities: impacts, consequences, and implications. Balkema, Rotterdam, The Netherlands, pp 3–12
  • Eaton, F.M., 1950. Significance of Carbonate in Irrigation Water. Soil Science, 69(2), 123–133.
  • Egbueri, J. C., 2019. Evaluation and characterization of the groundwater quality and hydrogeochemistry of Ogbaru farming district in southeastern Nigeria. SN Applied Sciences,1(8), 851.
  • Ekmekçi, M., 2005. Pesticide and nutrient contamination in the Ketsel polje-Kırkgöz karst springs, Southern Turkey, Environmental Geology, 49: 19-29
  • Erguvanlı, K., Yüzer, E., 1987. Yeraltısuları Jeolojisi, İTÜ yayınları no:23, 339s, İstanbul
  • Fisher, R.S., Mullican, F.W., 1997. Hydrochemical Evolution of Sodium-Sulfate and Sodium-Chloride Groundwater Beneath the Northern Chihuahuan Desert, Trans- Pecos, Texas, USA. Hydrogeology Journal, 10(4), 455–474.
  • Freeze, R. A., Cherry, J. A., 1979. Groundwater (p. 604). Englewood Cliffs: Prentice Hall.
  • Gibbs, R.J., 1970. Mechanisms to Trace Metal Transport in Rivers. Science, 180:71-173.
  • Irlayıcı-Davraz, A., 1998. Eğirdir - Burdur Gölleri Arasının Hidrojeoloji İncelemesi, SDÜ Fen Bilimleri Enstitüsü, Doktora Tezi, Isparta
  • İ.T.A.S.H.Y., 2005. İnsani Tüketim Amaçlı Sular. Türk İçme Suyu Standartları TS 266 sayılı standart -Türk Standartları Enstitüsü - Ankara.
  • Katz, B.G., Coplen, T.B., Bullen, T.D., Davis, J.H., 1998. Use of Chemical and Isotopic Tracers to Characterize the Interaction between Groundwater and SurfaceWater in Mantled Karst. Groundwater, 35, 1014–1028
  • Kelley, W.P., 1963. Use of Saline Irrigation, Water Soil Science, 95(4), 355-391
  • Kuldip, S., Hundal, H.S., Dhanwinder, S., 2011. Geochemistry and Assessment of Hydrogeochemical Processes in Groundwater in the Southern Part of Bathinda District of Punjab, Northwest India. Environmental Earth Science, 64, 1823-1833.
  • Kumar Singh, A., Mondal, G.C., Singh, T.B., Singh, S., Tewary, B.K., Sinha, A., 2012. Hydrogeochemical processes and quality assessment of groundwater in Dumka and Jamtara districts, Jharkhand, India. Environmetal Earth Science, 67, 2175–2191.
  • Kumar, M., Ramanathan, A.L., Rao, M.S., Kumar, B., 2006. Identification and evaluation of hydrogeochemical processes in the groundwater environment of Delhi, India. Environmental Geology, 50, 1025–1039.
  • Kumar, S. K., Rammohan, V., Sahayam, J. D., Jeevanandam, M., 2009. Assessment of groundwater quality and hydrogeochemistry of Manimuktha River basin, Tamil Nadu, India. Environmental Monitoring and Assessment, 159, 341-351.
  • Lakshmanan, E., Kannan, R., Senthil Kumar, M., 2003. Major ion chemistry and identification of hydrogeochemical processes of ground water in a part of Kancheepuram district, Tamil Nadu, India. Environmental Geosciences, 10(4), 157–166.
  • Maya, A.L., Loucks, M.D., 1995. Solute and Isotopic Geochemistry and Groundwater Flow in the Central Wasatch Range, Utah. Journal of Hydrology, 172, 31– 59.
  • Mayback, M., 1987. Global Chemical Weathering of Surficial Rocks Estimated from River-Dissolved Loads., American Journal of Science, 287, 401–428.
  • McLean, W., Jankowski, J., 2000. Groundwater quality and sustainability in an alluvial aquifer, Australia. In: Sililo et al (eds) Proceedings of XXX IAH congress on groundwater: past achievements and future challenges. Cape Town South Africa 26th November-1st December 2000. AA Balkema, Rotterdam, Brookfield
  • Mostafa, M. G., Uddin, S. H., Haque, A. B. M. H., 2017. Assessment of hydro-geochemistry and groundwater quality of Rajshahi City in Bangladesh. Applied Water Science, 7, 4663-4671.
  • Pazand, K., Hezarkhani, A., Ghanbari, Y., Aghavali, N., 2012. Geochemical and quality assessment of groundwater of Marand Basin, East Azarbaijan Province, northwestern Iran. Environmental Earth Science, 67, 1131–1143.
  • Piper, A. M., 1944. A Graphic Procedure in the Geochemical Interpretation of Water Analyses. Trans. Amer. Geophys. Union, vol. 25, p. 914-923.
  • Ragunath, H.M., 1987. Groundwater. New Delhi: Wiley.
  • Rajmohan, N., Elango, L., Ramachandran, S., Natarajan, M., 2000. Major Ion Correlation in Groundwater of Kancheepuram Region, South India. Indian Journal of Environmental Protection, 20(3), 188–193.
  • Richards, L.A., 1954. Diagnosis and Improvement of Saline Alkaline Soils, US Department of Agriculture, HandBook 60 (160)
  • Schoeller, H., 1697. Qualitative evaluation of groundwater resources, In Methods and techniques of groundwater investigation and development, Water Research. India: UNESCO; p. 44–52.
  • Subramani, T., Rajmohan, N., Elango, L., 2010. Groundwater geochemistry and identification of hydrogeochemical processes in a hard rock region, Southern India. Environmental Monitoring and Assessment, 162, 123-137.
  • Şahinci, A., 1991. Doğal Suların Jeokimyası, Reform Matbaası, 548s, İzmir.
  • Şenel, M., 1997. Maden Tetkik Arama Genel Müdürlüğü, 1/100000 ölçekli Türkiye Jeoloji Haritaları Isparta K-11(N25), No:11
  • Şener, Ş., Şener, E., Davraz, A., Varol, S., 2020. Hydrogeological and hydrochemical investigation in the Burdur Saline Lake Basin, southwest Turkey. Geochemistry, 80(4), 125592.
  • Şener, Ş., Bektaş, S., 2021. Antalya İli İçme Suyu Kaynaklarının Hidrojeokimyasal Özellikleri ve Sağlık Risk Değerlendirmesi. Mehmet Akif Ersoy Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 12(Ek (Suppl.) 1), 376-391.
  • Tay, C.K., 2012. Hydrochemistry of Groundwater in the Savelugu–Nanton District, Northern Ghana. Environmental Earth Science, 67: 2077–2087.
  • Tay, C. K., 2021. Hydrogeochemical framework of groundwater within the Asutifi-North District of the Brong-Ahafo Region, Ghana. Applied Water Science, 11(4), 72.
  • Tayfur, G., Kirer, T., Baba, A., 2008. Groundwater quality and hydrogeochemical properties of Torbalı Region, Izmir, Turkey. Environmental Monitoring and Assessment, 146, 157-169.
  • Todd, D. K., Mays, L. W., 1980. Groundwater Hydrology. John Willey & Sons. Inc., New York, 535.
  • W.H.O., 2022. World Health Organization, Guidelines for drinking‑water quality, Fourth edition incorporating the first and second addenda. ISBN 978-92-4-004506-4
  • Wilcox, L., 1955. Classification and use of irrigation waters (No. 969). US Department of Agriculture. Yalçınkaya, S., Ergin, A., Afşar, Ö. P., Dalkılıç, H., Taner, K., Özgönül, E., 1986. Batı Torosların jeoloji raporu. Ankara:
  • MTA Genel Müdürlüğü Jeoloji Etüdleri Daire Başkanlığı, No: 7898, 131 s.

HYDROGEOCHEMICAL PROPERTIES OF THE LIMESTONE AQUIFER SOUTH OF DAĞBELI VILLAGE (ANTALYA)

Year 2024, , 544 - 556, 26.09.2024
https://doi.org/10.21923/jesd.1520740

Abstract

In this study, the hydrogeochemical properties of the limestone aquifer in the south of Dağbeli Village (Antalya) were investigated and the hydrogeochemical character of the groundwater and the availability of groundwater were revealed by examining the geological and hydrogeological characteristics of the region. Beydağları formation and Tekkeköy member surfacing in the region have the characteristics of karstic aquifer. According to the results of the analyses of the water samples taken from the boreholes drilled in the karstic aquifer environment and from Kırkgöz springs discharging from the karstic aquifer in the region, the EC values of the waters vary between 352-730.3 μS/cm, pH value between 7.2-8.29 and hardness between 25.5-43.2 Fr0. According to Piper and Gibbs diagrams, the groundwaters are in the Ca-HCO3 water facies and the main factor controlling the groundwater chemistry in the region is rock-water interaction. According to hydrogeochemical processes, it can be said that the presence of Ca, Mg and HCO3 in the waters is related to non-carbonate sources and silicate weathering is dominant. As a result of the evaluation of the quality and usability characteristics of the groundwaters, it was determined that all water samples can be used as drinking and irrigation water.

References

  • Aghazadeh, N., Mogaddam, A. A., 2011. Investigation of hydrochemical characteristics of groundwater in the Harzandat aquifer, Northwest of Iran. Environmental monitoring and assessment, 176(1), 183-195.
  • Atilla, Ö., 1996. Çok Değişkenli İstatistiksel Analiz Teknikleri Kullanılarak Hidrojeokimyasal Verilerin Değerlendirilmesi, Hacettepe Üniversitesi, Fen Bilimleri Enstitüsü, Yüksek Mühendislik Tezi, Ankara.
  • Back, W., 1966. Hydrochemical Facies and Ground-Water Flow Patterns in Northern Part of Atlantic Coastal Plain, 498-A, 1-42.
  • Bilgin, Z.R., Karaman, T., Öztürk, Z., Şen, M.A., Şenel, M., 1990. Yeşilova-Acıgöl Civarının Jeolojisi Raporu. MTA Raporı, 9071, Ankara.
  • Datta, P.S., Tyagi, S.K., 1996. Major ion Chemistry of Groundwater in Delhi Area: Chemical Weathering Processes and Groundwater Flow Regime. Journal of Geological Society India 47:179–188.
  • Davraz, A., Karaguzel, R., Soyaslan, I., Sener, E., Seyman, F., Sener, S., 2009. Hydrogeology of karst aquifer systems in SW Turkey and an assessment of water quality and contamination problems. Environmental Geology, 58, 973-988. Davraz, A., Batur, B., 2021. Hydrogeochemistry characteristics of groundwater and health risk assessment in Yalvaç–Gelendost basin (Turkey). Applied Water Science, 11(4), 67.
  • Doneen, L.D., 1964. Water Quality for Agriculture. Department of Irrigation, University of Calfornia, Davis, 48.
  • Drew, D., 1999. Introduction. In: Drew D, Hötzl H (eds) Karst hydrogeology and human activities: impacts, consequences, and implications. Balkema, Rotterdam, The Netherlands, pp 3–12
  • Eaton, F.M., 1950. Significance of Carbonate in Irrigation Water. Soil Science, 69(2), 123–133.
  • Egbueri, J. C., 2019. Evaluation and characterization of the groundwater quality and hydrogeochemistry of Ogbaru farming district in southeastern Nigeria. SN Applied Sciences,1(8), 851.
  • Ekmekçi, M., 2005. Pesticide and nutrient contamination in the Ketsel polje-Kırkgöz karst springs, Southern Turkey, Environmental Geology, 49: 19-29
  • Erguvanlı, K., Yüzer, E., 1987. Yeraltısuları Jeolojisi, İTÜ yayınları no:23, 339s, İstanbul
  • Fisher, R.S., Mullican, F.W., 1997. Hydrochemical Evolution of Sodium-Sulfate and Sodium-Chloride Groundwater Beneath the Northern Chihuahuan Desert, Trans- Pecos, Texas, USA. Hydrogeology Journal, 10(4), 455–474.
  • Freeze, R. A., Cherry, J. A., 1979. Groundwater (p. 604). Englewood Cliffs: Prentice Hall.
  • Gibbs, R.J., 1970. Mechanisms to Trace Metal Transport in Rivers. Science, 180:71-173.
  • Irlayıcı-Davraz, A., 1998. Eğirdir - Burdur Gölleri Arasının Hidrojeoloji İncelemesi, SDÜ Fen Bilimleri Enstitüsü, Doktora Tezi, Isparta
  • İ.T.A.S.H.Y., 2005. İnsani Tüketim Amaçlı Sular. Türk İçme Suyu Standartları TS 266 sayılı standart -Türk Standartları Enstitüsü - Ankara.
  • Katz, B.G., Coplen, T.B., Bullen, T.D., Davis, J.H., 1998. Use of Chemical and Isotopic Tracers to Characterize the Interaction between Groundwater and SurfaceWater in Mantled Karst. Groundwater, 35, 1014–1028
  • Kelley, W.P., 1963. Use of Saline Irrigation, Water Soil Science, 95(4), 355-391
  • Kuldip, S., Hundal, H.S., Dhanwinder, S., 2011. Geochemistry and Assessment of Hydrogeochemical Processes in Groundwater in the Southern Part of Bathinda District of Punjab, Northwest India. Environmental Earth Science, 64, 1823-1833.
  • Kumar Singh, A., Mondal, G.C., Singh, T.B., Singh, S., Tewary, B.K., Sinha, A., 2012. Hydrogeochemical processes and quality assessment of groundwater in Dumka and Jamtara districts, Jharkhand, India. Environmetal Earth Science, 67, 2175–2191.
  • Kumar, M., Ramanathan, A.L., Rao, M.S., Kumar, B., 2006. Identification and evaluation of hydrogeochemical processes in the groundwater environment of Delhi, India. Environmental Geology, 50, 1025–1039.
  • Kumar, S. K., Rammohan, V., Sahayam, J. D., Jeevanandam, M., 2009. Assessment of groundwater quality and hydrogeochemistry of Manimuktha River basin, Tamil Nadu, India. Environmental Monitoring and Assessment, 159, 341-351.
  • Lakshmanan, E., Kannan, R., Senthil Kumar, M., 2003. Major ion chemistry and identification of hydrogeochemical processes of ground water in a part of Kancheepuram district, Tamil Nadu, India. Environmental Geosciences, 10(4), 157–166.
  • Maya, A.L., Loucks, M.D., 1995. Solute and Isotopic Geochemistry and Groundwater Flow in the Central Wasatch Range, Utah. Journal of Hydrology, 172, 31– 59.
  • Mayback, M., 1987. Global Chemical Weathering of Surficial Rocks Estimated from River-Dissolved Loads., American Journal of Science, 287, 401–428.
  • McLean, W., Jankowski, J., 2000. Groundwater quality and sustainability in an alluvial aquifer, Australia. In: Sililo et al (eds) Proceedings of XXX IAH congress on groundwater: past achievements and future challenges. Cape Town South Africa 26th November-1st December 2000. AA Balkema, Rotterdam, Brookfield
  • Mostafa, M. G., Uddin, S. H., Haque, A. B. M. H., 2017. Assessment of hydro-geochemistry and groundwater quality of Rajshahi City in Bangladesh. Applied Water Science, 7, 4663-4671.
  • Pazand, K., Hezarkhani, A., Ghanbari, Y., Aghavali, N., 2012. Geochemical and quality assessment of groundwater of Marand Basin, East Azarbaijan Province, northwestern Iran. Environmental Earth Science, 67, 1131–1143.
  • Piper, A. M., 1944. A Graphic Procedure in the Geochemical Interpretation of Water Analyses. Trans. Amer. Geophys. Union, vol. 25, p. 914-923.
  • Ragunath, H.M., 1987. Groundwater. New Delhi: Wiley.
  • Rajmohan, N., Elango, L., Ramachandran, S., Natarajan, M., 2000. Major Ion Correlation in Groundwater of Kancheepuram Region, South India. Indian Journal of Environmental Protection, 20(3), 188–193.
  • Richards, L.A., 1954. Diagnosis and Improvement of Saline Alkaline Soils, US Department of Agriculture, HandBook 60 (160)
  • Schoeller, H., 1697. Qualitative evaluation of groundwater resources, In Methods and techniques of groundwater investigation and development, Water Research. India: UNESCO; p. 44–52.
  • Subramani, T., Rajmohan, N., Elango, L., 2010. Groundwater geochemistry and identification of hydrogeochemical processes in a hard rock region, Southern India. Environmental Monitoring and Assessment, 162, 123-137.
  • Şahinci, A., 1991. Doğal Suların Jeokimyası, Reform Matbaası, 548s, İzmir.
  • Şenel, M., 1997. Maden Tetkik Arama Genel Müdürlüğü, 1/100000 ölçekli Türkiye Jeoloji Haritaları Isparta K-11(N25), No:11
  • Şener, Ş., Şener, E., Davraz, A., Varol, S., 2020. Hydrogeological and hydrochemical investigation in the Burdur Saline Lake Basin, southwest Turkey. Geochemistry, 80(4), 125592.
  • Şener, Ş., Bektaş, S., 2021. Antalya İli İçme Suyu Kaynaklarının Hidrojeokimyasal Özellikleri ve Sağlık Risk Değerlendirmesi. Mehmet Akif Ersoy Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 12(Ek (Suppl.) 1), 376-391.
  • Tay, C.K., 2012. Hydrochemistry of Groundwater in the Savelugu–Nanton District, Northern Ghana. Environmental Earth Science, 67: 2077–2087.
  • Tay, C. K., 2021. Hydrogeochemical framework of groundwater within the Asutifi-North District of the Brong-Ahafo Region, Ghana. Applied Water Science, 11(4), 72.
  • Tayfur, G., Kirer, T., Baba, A., 2008. Groundwater quality and hydrogeochemical properties of Torbalı Region, Izmir, Turkey. Environmental Monitoring and Assessment, 146, 157-169.
  • Todd, D. K., Mays, L. W., 1980. Groundwater Hydrology. John Willey & Sons. Inc., New York, 535.
  • W.H.O., 2022. World Health Organization, Guidelines for drinking‑water quality, Fourth edition incorporating the first and second addenda. ISBN 978-92-4-004506-4
  • Wilcox, L., 1955. Classification and use of irrigation waters (No. 969). US Department of Agriculture. Yalçınkaya, S., Ergin, A., Afşar, Ö. P., Dalkılıç, H., Taner, K., Özgönül, E., 1986. Batı Torosların jeoloji raporu. Ankara:
  • MTA Genel Müdürlüğü Jeoloji Etüdleri Daire Başkanlığı, No: 7898, 131 s.
There are 46 citations in total.

Details

Primary Language Turkish
Subjects Hydrogeology
Journal Section Research Articles
Authors

Ayşen Davraz 0000-0003-2442-103X

Şehnaz Şener 0000-0003-3191-2291

Erhan Şener 0000-0001-6263-8366

Publication Date September 26, 2024
Submission Date July 23, 2024
Acceptance Date August 22, 2024
Published in Issue Year 2024

Cite

APA Davraz, A., Şener, Ş., & Şener, E. (2024). DAĞBELİ KÖYÜ (ANTALYA) GÜNEYİ KİREÇTAŞI AKİFERİNİN HİDROJEOKİMYASAL ÖZELLİKLERİ. Mühendislik Bilimleri Ve Tasarım Dergisi, 12(3), 544-556. https://doi.org/10.21923/jesd.1520740