Research Article
BibTex RIS Cite

POTENTIAL USE OF HAZELNUT PROCESSING PLANT WASTES AS A SORBENT FOR THE SIMULTANEOUS REMOVAL OF MULTI-ELEMENTS FROM WATER

Year 2019, , 301 - 312, 26.06.2019
https://doi.org/10.21923/jesd.486065

Abstract

In this paper, the effects
of pH (1.5-8.0), initial element concentration (
0.5 to 20 mg L−1.) and sorbent dosage (1 - 20 g L-1) were investigated on the potential use of hazelnut processing plant
wastes, hazelnut shell (SH) and hazelnut skin (SK), for the simultaneous
removal of Al, Cr, Cu, Cd, Pb, As and Fe from water. The surface morphology of
the sorbents, elemental analysis, FTIR, SEM-EDS and BET analysis were performed
and specific surface areas of the sorbents were found as 0.676 m2 g-1
(for SH) and 0.768 m2 g-1 (for SK). The results showed
that surfaces of both sorbents are rough, contains pores that allow to entrap
heavy metals and functional groups such as carboxylic acid, phenolic compounds,
etc. to which the heavy metal ions can attach. While the optimum pH was
determined as 5.0 for all elements in both sorbent systems, the percent removal
of heavy metal increased with increase in initial heavy metal concentration up
to 8 mg L-1 (except cadmium for SH and copper and cadmium for SK).
While optimum sorbent dosage was obtained 10 g L-1 for SH sorbent,
increase of sorbent amount led to a decrease of the percentage of removal for
SK. Adsorption models were used for the mathematical description of adsorption
equilibrium and isotherm constants were evaluated at room temperature (22 ± 2
C). The adsorption
equilibrium data were fitted well to Langmuir and Langmuir-Freundlich models in
most cases and showed favorable adsorption behavior

References

  • Afkhami, A.; Saber-Tehrani, M.; Bagheri, H., 2010. Simultaneous removal of heavy-metal ions in wastewater samples using nano-alumina modified with 2,4-dinitrophenylhydrazine. J. of Hazar. Mater. 181, 836-844.
  • Ahmedna, M.; Marshall, W.E.; Husseiny, A.A.; Rao, R.M.; Goktepe, I., 2008. The use of nutshell carbons in drinking water filters for removal of trace metals. Water Res. 38, 1062-1068.
  • Aksu, Z.; Tatli, A.I.; Tunc, O., 2008. A comparative adsorption/biosorption study of Acid Blue 161: Effect of temperature on equilibrium and kinetic parameters. Chem. Eng. J. 142, 23-39.
  • Ali, R.M.; Hamad, H.A.; Hussein, M.M.; Malash, G.F., 2016. Potential of using green adsorbent of heavy metal removal from aqueous solutions: Adsorption kinetics, isotherm, thermodynamic, mechanism and economic analysis. Ecol. Eng. 91, 317-332.
  • Amuda, O.S.; Giwa, A.A.; Bello, I.A., 2007. Removal of heavy metal from industrial wastewater using modified activated coconut shell carbon. Biochem. Eng. J.. 36, 174-181.
  • Aremu, D.A.; Olawuyi, J.F.; Meshitsuka, S.; Sridhar, M.K.; Oluwande, P.A., 2002. Heavy metal analysis of groundwater from Warri, Nigeria. Int. J. of Environ. Health Res. 12, 261-267.
  • Barakat, M.A., 2011. New trends in removing heavy metals from industrial wastewater. Arabian J. of Chem.. 4, 361-377.
  • Bestawy, E.E.; Helmy, S.; Hussien, H.; Fahmy, M.; Amer, R., 2012. Bioremediation of heavy metal-contaminated effluent using optimized activated sludge bacteria. Applied Water Sci. 3, 181-192.
  • Blöcher, C.; Dorda, J.; Mavrov, V.; Chmiel, H.; Lazaridis, N.K.; Matis, K.A. 2003. Hybrid flotation—membrane filtration process for the removal of heavy metal ions from wastewater. Water Res. 37, 4018-4026.
  • Bulut, Y.; Tez, Z., 2007. Adsorption studies on ground shells of hazelnut and almond. J. of Hazar. Mater. 149, 35-41.
  • Chowdhury, S.; Mazumder, M.A.; Al-Attas, O.; Husain, T., 2016. Heavy metals in drinking water: Occurrences, implications, and future needs in developing countries. The Sci. of the Total Environ. 569-57, 476-488.
  • Colak, E.H.; Yomralioglu, T.; Nisanci, R.; Yildirim, V.; Duran, C., 2015. Geostatistical Analysis of the Relationship Between Heavy Metals in Drinking Water and Cancer Incidence in Residential Areas in the Black Sea Region of Turkey. J. of Environ. Health. 77, 86-93.
  • Demirbas, O.; Karadag, A.; Alkan, M.; Dogan, M., 2008. Removal of copper ions from aqueous solutions by hazelnut shell. J. of Hazard Mater. 153, 677-684.
  • Gautam, R.K.; Mudhoo, A.; Lofrano, G.; Chattopadhyaya, M.C. 2014. Biomass-derived biosorbents for metal ions sequestration: Adsorbent modification and activation methods and adsorbent regeneration. J. of Environ. Chem. Eng. 2, 239-259.
  • Gunatilake, S.K., 2015. Methods of Removing Heavy Metals from Industrial Wastewater. J of Multidiscip Eng Sci Studies (JMESS) 1, 12-18.
  • Kadirvelu, K.; Thamaraiselvi, K.; Namasivayam, C., 2001. Removal of heavy metals from industrial wastewaters by adsorption onto activated carbon prepared from an agricultural solid waste. Bioresour. Technol. 76, 63-65.
  • Karadag, A., 2008. The removal of some metal ions from industrial wastewaters by biosorbent. Institute of Science, Departmant of Chemistry. Balikesir, Balikesir University.
  • Karadeniz, T.; Bostan, S.Z.; Tuncer, C.; Tarakçıoğlu, C., 2008. Fındık Yetiştiriciliği. Ordu.
  • Kazemipour, M.; Ansari, M.; Tajrobehkar, S.; Majdzadeh, M.; Kermani, H.R., 2008. Removal of lead, cadmium, zinc, and copper from industrial wastewater by carbon developed from walnut, hazelnut, almond, pistachio shell, and apricot stone. Journal of Hazard. Mater. 150, 322-327.
  • Koubaissy, B.; Toufaily, J.; Cheikh, S.; Hassan, M.; Hamieh, T., 2014. Valorization of agricultural waste into activated carbons and its adsorption characteristics for heavy metals. Open Eng. 4.
  • Köysüren, H.N.U.; Dursun, Ş., 2013. The removal of heavy metal ions from the aquatic environment by modified apricot kernel shells. J. of the Faculty of Eng. and Archit. of Gazi Univ. 28, 427-436.
  • Lee, H.S.; Suh, J.H.; Kim, I.B.; Yoon, T., 2004. Effect of aluminum in two-metal biosorption by an algal biosorbent. Minerals Eng. 17, 487-493.
  • Li, W.C.; Law, F.Y.; Chan, H.M., 2017. Biosorption studies on copper (II) and cadmium (II) using pretreated rice straw and rice husk. Environ Sci and Pollut Res 24(10), 8903–891.
  • Pehlivan, E.; Altun, T., 2008. Biosorption of chromium (VI) ion from aqueous solutions using walnut, hazelnut and almond shell. Journal of Hazard. Mater. 155, 378-384.
  • Sencan, A.; Karaboyaci, M.; Kilic, M., 2015. Determination of lead(II) sorption capacity of hazelnut shell and activated carbon obtained from hazelnut shell activated with ZnCl2. Environ. Sci. and Pollut. Res. Int. 22, 3238-3248.
  • Tchounwou, P.B.; Yedjou, C.G.; Patlolla, A.K.; Sutton, D.J., 2012. Heavy metal toxicity and the environment. Exs. 101, 133-164.
  • Tunç Dede, Ö., 2018. Atık sulardan metallerin gideriminde fındık kabuğunun adsorbent olarak kullanılması: Adsorpsiyon mekanizması ve kinetik modelleme. Sakarya University Journal of Science, 22 (2), 232-242. DOI: 10.16984/saufenbilder.327245
  • Turkish Regulation, 2004. Turkish Water Pollution Control Regulation in: Urbanization M.o.E.a., ed. 25687. Official Gazette, Ankara, Official Gazette.
  • Vaghetti, J.C.P.; Lima, E.C.; Royer, B.; Cardoso, N.F.; Martins, B.; Calvete, T., 2009. Pecan Nutshell as Biosorbent to Remove Toxic Metals from Aqueous Solution. Sep. Sci. and Technol. 44, 615-644.
  • Vazquez, G.; Calvo, M.; Sonia Freire, M.; Gonzalez-Alvarez, J.; Antorrena, G., 2009. Chestnut shell as heavy metal adsorbent: optimization study of lead, copper and zinc cations removal. J. Hazard. Mater. 172, 1402-1414.
  • Volesky, B.; Holant, Z.R., 1995. Biosorption of Heavy Metals. Biotechnol Prog. 11, 235-250.
  • Wahyuni, E.; Aprilita, N.; Hatimah, H.; Wulandari, A.; Mudasir, M., 2015. Removal of Toxic Metal Ions in Water by Photocatalytic Method. Am. Chem. Sci. J. 5, 194-201.
  • Wan Ngah, W.S.; Hanafiah, M.A., 2008. Removal of heavy metal ions from wastewater by chemically modified plant wastes as adsorbents: a review. Bioresour. Technol. 99, 3935-3948.
  • Wang, J.; Chen, C., 2006. Biosorption of heavy metals by Saccharomyces cerevisiae: a review. Biotechnol. Adv. 24, 427-451.
  • WHO, 1996. Iron in drinking-water. Geneva: World Health Organization.
  • WHO, 2011. Guidelines for drinking-water quality Geneva: World Health Organization.
  • Wolfová, R.; Pertile, E.; Fečko, P., 2013. Removal of lead from aqueous solution by walnut shell. J. of Environ. Chem. and Ecotoxicol. 5, 159-167.
  • Zhang, L.; Zeng, Y.; Cheng, Z., 2016. Removal of heavy metal ions using chitosan and modified chitosan: A review. J. of Mol. Liq. 214, 175-191.

SULARDAN ÇOKLU-ELEMENT GİDERİMİNDE FINDIK İŞLEME TESİSLERİ ATIKLARININ SORBENT OLARAK KULLANIMI

Year 2019, , 301 - 312, 26.06.2019
https://doi.org/10.21923/jesd.486065

Abstract

Bu çalışmada; Al, Cr, Cu, Cd, Pb, As ve Fe'in
sudan eş zamanlı olarak uzaklaştırılmasında fındık işleme tesisi atıklarından,
fındık kabuğu (SH) ve fındık zarının (SK) potansiyel kullanımına, ortam
pH’ı
(
1.5 - 8.0), başlangıç element derişimi (0.5-20 mg L−1)
ve sorbent dozunun (
1 - 20 g L-1) etkileri araştırılmıştır. Sorbentlerin yüzey morfolojisi, elementel analizi, FTIR, SEM-EDS
ve BET analizleri yapılmış ve özgül yüzey alanları 0.676 m2 g-1
(SH için) ve 0.768 m2 g-1 (SK için) olarak bulunmuştur.
Sonuçlar, her iki sorbent yüzeyinin pürüzlü, ağır metalleri tutabileceği
gözenekler ve karboksilik asit, fenol bileşikleri gibi fonksiyonel gruplar
içerdiğini göstermiştir. Her iki sorbent sisteminde tüm elementler için optimum
pH, 5.0 olarak
belirlenirken, başlangıç metal derişiminin 8 mg L-1’e kadar artması ile birlikte element giderim yüzdesinin (SH için
kadmiyum, SK için ise bakır ve kadmiyum hariç) arttığı bulunmuştur
. Optimum sorbent dozu, SH için
10 g L-1 olarak bulunurken, SK için sorbent miktarının artması ile
giderim yüzdesi azalmıştır.
Adsorpsiyon dengesinin
matematiksel modellemesi için adsorpsiyon modelleri kullanılmış ve izoterm
sabitleri oda sıcaklığında (22 ± 2
C) hesaplanmıştır. Çoğu
durumda adsorpsiyon denge verileri, Langmuir ve Langmuir-Freundlich modellerine
uyum sağlamış ve istemli-adsorpsiyon davranışları göstermiştir.

References

  • Afkhami, A.; Saber-Tehrani, M.; Bagheri, H., 2010. Simultaneous removal of heavy-metal ions in wastewater samples using nano-alumina modified with 2,4-dinitrophenylhydrazine. J. of Hazar. Mater. 181, 836-844.
  • Ahmedna, M.; Marshall, W.E.; Husseiny, A.A.; Rao, R.M.; Goktepe, I., 2008. The use of nutshell carbons in drinking water filters for removal of trace metals. Water Res. 38, 1062-1068.
  • Aksu, Z.; Tatli, A.I.; Tunc, O., 2008. A comparative adsorption/biosorption study of Acid Blue 161: Effect of temperature on equilibrium and kinetic parameters. Chem. Eng. J. 142, 23-39.
  • Ali, R.M.; Hamad, H.A.; Hussein, M.M.; Malash, G.F., 2016. Potential of using green adsorbent of heavy metal removal from aqueous solutions: Adsorption kinetics, isotherm, thermodynamic, mechanism and economic analysis. Ecol. Eng. 91, 317-332.
  • Amuda, O.S.; Giwa, A.A.; Bello, I.A., 2007. Removal of heavy metal from industrial wastewater using modified activated coconut shell carbon. Biochem. Eng. J.. 36, 174-181.
  • Aremu, D.A.; Olawuyi, J.F.; Meshitsuka, S.; Sridhar, M.K.; Oluwande, P.A., 2002. Heavy metal analysis of groundwater from Warri, Nigeria. Int. J. of Environ. Health Res. 12, 261-267.
  • Barakat, M.A., 2011. New trends in removing heavy metals from industrial wastewater. Arabian J. of Chem.. 4, 361-377.
  • Bestawy, E.E.; Helmy, S.; Hussien, H.; Fahmy, M.; Amer, R., 2012. Bioremediation of heavy metal-contaminated effluent using optimized activated sludge bacteria. Applied Water Sci. 3, 181-192.
  • Blöcher, C.; Dorda, J.; Mavrov, V.; Chmiel, H.; Lazaridis, N.K.; Matis, K.A. 2003. Hybrid flotation—membrane filtration process for the removal of heavy metal ions from wastewater. Water Res. 37, 4018-4026.
  • Bulut, Y.; Tez, Z., 2007. Adsorption studies on ground shells of hazelnut and almond. J. of Hazar. Mater. 149, 35-41.
  • Chowdhury, S.; Mazumder, M.A.; Al-Attas, O.; Husain, T., 2016. Heavy metals in drinking water: Occurrences, implications, and future needs in developing countries. The Sci. of the Total Environ. 569-57, 476-488.
  • Colak, E.H.; Yomralioglu, T.; Nisanci, R.; Yildirim, V.; Duran, C., 2015. Geostatistical Analysis of the Relationship Between Heavy Metals in Drinking Water and Cancer Incidence in Residential Areas in the Black Sea Region of Turkey. J. of Environ. Health. 77, 86-93.
  • Demirbas, O.; Karadag, A.; Alkan, M.; Dogan, M., 2008. Removal of copper ions from aqueous solutions by hazelnut shell. J. of Hazard Mater. 153, 677-684.
  • Gautam, R.K.; Mudhoo, A.; Lofrano, G.; Chattopadhyaya, M.C. 2014. Biomass-derived biosorbents for metal ions sequestration: Adsorbent modification and activation methods and adsorbent regeneration. J. of Environ. Chem. Eng. 2, 239-259.
  • Gunatilake, S.K., 2015. Methods of Removing Heavy Metals from Industrial Wastewater. J of Multidiscip Eng Sci Studies (JMESS) 1, 12-18.
  • Kadirvelu, K.; Thamaraiselvi, K.; Namasivayam, C., 2001. Removal of heavy metals from industrial wastewaters by adsorption onto activated carbon prepared from an agricultural solid waste. Bioresour. Technol. 76, 63-65.
  • Karadag, A., 2008. The removal of some metal ions from industrial wastewaters by biosorbent. Institute of Science, Departmant of Chemistry. Balikesir, Balikesir University.
  • Karadeniz, T.; Bostan, S.Z.; Tuncer, C.; Tarakçıoğlu, C., 2008. Fındık Yetiştiriciliği. Ordu.
  • Kazemipour, M.; Ansari, M.; Tajrobehkar, S.; Majdzadeh, M.; Kermani, H.R., 2008. Removal of lead, cadmium, zinc, and copper from industrial wastewater by carbon developed from walnut, hazelnut, almond, pistachio shell, and apricot stone. Journal of Hazard. Mater. 150, 322-327.
  • Koubaissy, B.; Toufaily, J.; Cheikh, S.; Hassan, M.; Hamieh, T., 2014. Valorization of agricultural waste into activated carbons and its adsorption characteristics for heavy metals. Open Eng. 4.
  • Köysüren, H.N.U.; Dursun, Ş., 2013. The removal of heavy metal ions from the aquatic environment by modified apricot kernel shells. J. of the Faculty of Eng. and Archit. of Gazi Univ. 28, 427-436.
  • Lee, H.S.; Suh, J.H.; Kim, I.B.; Yoon, T., 2004. Effect of aluminum in two-metal biosorption by an algal biosorbent. Minerals Eng. 17, 487-493.
  • Li, W.C.; Law, F.Y.; Chan, H.M., 2017. Biosorption studies on copper (II) and cadmium (II) using pretreated rice straw and rice husk. Environ Sci and Pollut Res 24(10), 8903–891.
  • Pehlivan, E.; Altun, T., 2008. Biosorption of chromium (VI) ion from aqueous solutions using walnut, hazelnut and almond shell. Journal of Hazard. Mater. 155, 378-384.
  • Sencan, A.; Karaboyaci, M.; Kilic, M., 2015. Determination of lead(II) sorption capacity of hazelnut shell and activated carbon obtained from hazelnut shell activated with ZnCl2. Environ. Sci. and Pollut. Res. Int. 22, 3238-3248.
  • Tchounwou, P.B.; Yedjou, C.G.; Patlolla, A.K.; Sutton, D.J., 2012. Heavy metal toxicity and the environment. Exs. 101, 133-164.
  • Tunç Dede, Ö., 2018. Atık sulardan metallerin gideriminde fındık kabuğunun adsorbent olarak kullanılması: Adsorpsiyon mekanizması ve kinetik modelleme. Sakarya University Journal of Science, 22 (2), 232-242. DOI: 10.16984/saufenbilder.327245
  • Turkish Regulation, 2004. Turkish Water Pollution Control Regulation in: Urbanization M.o.E.a., ed. 25687. Official Gazette, Ankara, Official Gazette.
  • Vaghetti, J.C.P.; Lima, E.C.; Royer, B.; Cardoso, N.F.; Martins, B.; Calvete, T., 2009. Pecan Nutshell as Biosorbent to Remove Toxic Metals from Aqueous Solution. Sep. Sci. and Technol. 44, 615-644.
  • Vazquez, G.; Calvo, M.; Sonia Freire, M.; Gonzalez-Alvarez, J.; Antorrena, G., 2009. Chestnut shell as heavy metal adsorbent: optimization study of lead, copper and zinc cations removal. J. Hazard. Mater. 172, 1402-1414.
  • Volesky, B.; Holant, Z.R., 1995. Biosorption of Heavy Metals. Biotechnol Prog. 11, 235-250.
  • Wahyuni, E.; Aprilita, N.; Hatimah, H.; Wulandari, A.; Mudasir, M., 2015. Removal of Toxic Metal Ions in Water by Photocatalytic Method. Am. Chem. Sci. J. 5, 194-201.
  • Wan Ngah, W.S.; Hanafiah, M.A., 2008. Removal of heavy metal ions from wastewater by chemically modified plant wastes as adsorbents: a review. Bioresour. Technol. 99, 3935-3948.
  • Wang, J.; Chen, C., 2006. Biosorption of heavy metals by Saccharomyces cerevisiae: a review. Biotechnol. Adv. 24, 427-451.
  • WHO, 1996. Iron in drinking-water. Geneva: World Health Organization.
  • WHO, 2011. Guidelines for drinking-water quality Geneva: World Health Organization.
  • Wolfová, R.; Pertile, E.; Fečko, P., 2013. Removal of lead from aqueous solution by walnut shell. J. of Environ. Chem. and Ecotoxicol. 5, 159-167.
  • Zhang, L.; Zeng, Y.; Cheng, Z., 2016. Removal of heavy metal ions using chitosan and modified chitosan: A review. J. of Mol. Liq. 214, 175-191.
There are 38 citations in total.

Details

Primary Language English
Subjects Environmental Engineering
Journal Section Research Articles
Authors

Özlem Tunç Dede 0000-0001-5534-4773

Publication Date June 26, 2019
Submission Date November 20, 2018
Acceptance Date January 2, 2019
Published in Issue Year 2019

Cite

APA Tunç Dede, Ö. (2019). POTENTIAL USE OF HAZELNUT PROCESSING PLANT WASTES AS A SORBENT FOR THE SIMULTANEOUS REMOVAL OF MULTI-ELEMENTS FROM WATER. Mühendislik Bilimleri Ve Tasarım Dergisi, 7(2), 301-312. https://doi.org/10.21923/jesd.486065