Research Article
BibTex RIS Cite

INVESTIGATION OF OMNIDIRECTIONAL BANDGAPS IN PHOTONIC CRYSTALS

Year 2019, , 744 - 750, 19.12.2019
https://doi.org/10.21923/jesd.510403

Abstract

Rapidly increasing data
usage rates in fixed and wireless technologies encouraged the researches to
find alternative ways of using limited bandwidth in carrier medium more
efficiently. Recent developments in material science, particularly in nanometer
scale, allowed engineers to design low power components that can ensure
efficient use of optical spectrum. In this study, we designed an
omnidirectional reflector that can be used as an optical component without any
dependency on polarization or angle of incidence. Band edge frequencies of
omnidirectional reflector are determined by employing auxiliary functions of
generalized scattering matrix (AFGSM) method which provides faster and accurate
estimates in comparison to conventional methods existing in the literature. Using
the proposed method proper photonic crystal structures (Te, Ta2O5,
TiO2) are selected according to given design objective while
satisfying the periodicity condition. Computer simulation results are given for
verification. The designed reflector provides an omnidirectional relative
bandwidth (ORB) value of 56.63% with an omnidirectional photonic bandgap (OBG) in
the range of 924 nm to 1654 nm in optical wavelength region.

References

  • Banaei, H. A., & Rostami, A. (2008). A novel proposal for passive all-optical demultiplexer for DWDM systems using 2-D photonic crystals. Journal of Electromagnetic Waves and Applications, 22(4), 471-482.
  • Erkan, O., Akıncı, M. N., & Şimşek, S. (2018). A fast hybrid method for the bandgap analysis of 2D photonic crystals based on EMT and AFGSM methods. AEU-International Journal of Electronics and Communications, 87, 107-112.
  • Joannopoulos, J. D., Johnson, S. G., Winn, J. N., & Meade, R. D. (2011). Photonic crystals: molding the flow of light. Princeton university press.
  • Kim, S. H., & Hwangbo, C. K. (2002). Design of omnidirectional high reflectors with quarter-wave dielectric stacks for optical telecommunication bands. Applied Optics, 41(16), 3187-3192.
  • Kuang, W., Kim, W. J., & O'Brien, J. D. (2007). Finite-difference time domain method for nonorthogonal unit-cell two-dimensional photonic crystals. Journal of Lightwave Technology, 25(9), 2612-2617.
  • Liang, J., & Yang, H. D. (2009). Microstrip patch antennas on tunable electromagnetic band-gap substrates. IEEE transactions on antennas and propagation, 57(6), 1612-1617.
  • Notomi, M., Shinya, A., Mitsugi, S., Kira, G., Kuramochi, E., & Tanabe, T. (2005). Optical bistable switching action of Si high-Q photonic-crystal nanocavities. Optics Express, 13(7), 2678-2687.
  • Pendry, J. B., & MacKinnon, A. (1992). Calculation of photon dispersion relations. Physical Review Letters, 69(19), 2772.
  • Prather, D. W., Shi, S., Sharkawy, A., Murakowski, J., & Schneider, G. J. (2009). Photonic crystals. Theory, Aplications and Fabrication.
  • Qiu, M. (2001). Analysis of guided modes in photonic crystal fibers using the finite‐difference time‐domain method. Microwave and Optical Technology Letters, 30(5), 327-330.
  • Sakoda, K., & Ochiai, T. (2001). Dispersion relation and optical transmittance of a hexagonal photonic crystal slab. Physical review B, 63(12), 125107.
  • Sharma, A., Dwivedi, V. K., & Singh, G. (2008, July). THz rectangular patch microstrip antenna design using photonic crystal as substrate. In Progress in Electromagnetic Research Symposium, Cambridge, USA (pp. 161-165).
  • Simsek, S., & Topuz, E. (2007). Some properties of generalized scattering matrix representations for metallic waveguides with periodic dielectric loading. IEEE Transactions on Microwave Theory and Techniques, 55(11), 2336.
  • Sözüer, H. S., Haus, J. W., & Inguva, R. (1992). Photonic bands: Convergence problems with the plane-wave method. Physical Review B, 45(24), 13962.
  • Şimşek, S. (2013). A novel method for designing one dimensional photonic crystals with given bandgap characteristics. AEU-International Journal of Electronics and Communications, 67(10), 827-832.
  • Wosinski, L., Liu, L., Zhu, N., & Thylen, L. (2009). Technology challenges for monolithically integrated waveguide demultiplexers. Chinese Optics Letters, 7(4), 315-318.

FOTONİK KRİSTALLERDE TÜMYÖNLÜ BANT ARALIĞININ İNCELENMESİ

Year 2019, , 744 - 750, 19.12.2019
https://doi.org/10.21923/jesd.510403

Abstract

Kablolu ve kablosuz ağ teknolojilerinde veri kullanım oranının
artması taşıyıcı ortamdaki bant genişliklerinin daha etkin kullanıması
gerekliliğini ortaya çıkarmıştır. Gelişen malzeme teknolojisi sayesinde
nanometre boyutlarında düşük güçle çalışan ve optik spektrumun verimli
kullanılmasını sağlayan bileşenlerin tasarlanması mümkün hale gelmiştir. Bu
çalışmada optik frekans bölgesindeki uygulamalarda kullanılan geliş açısı ve
kutuplanmadan bağımsız tümyönlü yansıtıcı bileşeninin analiz ve tasarımı
yapılmıştır. Tümyönlü yansıtıcının bant kenar frekanslarının belirlenmesinde,
bilinen sayısal yöntemlere alternatif olarak daha hızlı ve yüksek doğrulukta
sonuç veren genelleştirilmiş saçılma matrisi yardımcı fonksiyonları (AFGSM)
yöntemi kullanılmıştır. Önerilen alternatif yöntem ile periyodiklik koşulu
altında istenen tümyönlü yansıtıcı parametrelerini sağlayan fotonik kristalli
dielektrik malzemeler uygun şekilde seçilmiş (Te, Ta2O5,
TiO2) ve elde edilen sonuçlar bilgisayar benzetimleri ile
doğrulanmıştır. Tasarımı yapılan yansıtıcı, optik dalgaboyu bölgesinde %56.63’lük
tümyönlü bağıl bant genişliği (ORB) değerine sahip, 924 nm – 1654 nm aralığında
tümyönlü fotonik durdurma bandı (OBG) sağlamaktadır.

References

  • Banaei, H. A., & Rostami, A. (2008). A novel proposal for passive all-optical demultiplexer for DWDM systems using 2-D photonic crystals. Journal of Electromagnetic Waves and Applications, 22(4), 471-482.
  • Erkan, O., Akıncı, M. N., & Şimşek, S. (2018). A fast hybrid method for the bandgap analysis of 2D photonic crystals based on EMT and AFGSM methods. AEU-International Journal of Electronics and Communications, 87, 107-112.
  • Joannopoulos, J. D., Johnson, S. G., Winn, J. N., & Meade, R. D. (2011). Photonic crystals: molding the flow of light. Princeton university press.
  • Kim, S. H., & Hwangbo, C. K. (2002). Design of omnidirectional high reflectors with quarter-wave dielectric stacks for optical telecommunication bands. Applied Optics, 41(16), 3187-3192.
  • Kuang, W., Kim, W. J., & O'Brien, J. D. (2007). Finite-difference time domain method for nonorthogonal unit-cell two-dimensional photonic crystals. Journal of Lightwave Technology, 25(9), 2612-2617.
  • Liang, J., & Yang, H. D. (2009). Microstrip patch antennas on tunable electromagnetic band-gap substrates. IEEE transactions on antennas and propagation, 57(6), 1612-1617.
  • Notomi, M., Shinya, A., Mitsugi, S., Kira, G., Kuramochi, E., & Tanabe, T. (2005). Optical bistable switching action of Si high-Q photonic-crystal nanocavities. Optics Express, 13(7), 2678-2687.
  • Pendry, J. B., & MacKinnon, A. (1992). Calculation of photon dispersion relations. Physical Review Letters, 69(19), 2772.
  • Prather, D. W., Shi, S., Sharkawy, A., Murakowski, J., & Schneider, G. J. (2009). Photonic crystals. Theory, Aplications and Fabrication.
  • Qiu, M. (2001). Analysis of guided modes in photonic crystal fibers using the finite‐difference time‐domain method. Microwave and Optical Technology Letters, 30(5), 327-330.
  • Sakoda, K., & Ochiai, T. (2001). Dispersion relation and optical transmittance of a hexagonal photonic crystal slab. Physical review B, 63(12), 125107.
  • Sharma, A., Dwivedi, V. K., & Singh, G. (2008, July). THz rectangular patch microstrip antenna design using photonic crystal as substrate. In Progress in Electromagnetic Research Symposium, Cambridge, USA (pp. 161-165).
  • Simsek, S., & Topuz, E. (2007). Some properties of generalized scattering matrix representations for metallic waveguides with periodic dielectric loading. IEEE Transactions on Microwave Theory and Techniques, 55(11), 2336.
  • Sözüer, H. S., Haus, J. W., & Inguva, R. (1992). Photonic bands: Convergence problems with the plane-wave method. Physical Review B, 45(24), 13962.
  • Şimşek, S. (2013). A novel method for designing one dimensional photonic crystals with given bandgap characteristics. AEU-International Journal of Electronics and Communications, 67(10), 827-832.
  • Wosinski, L., Liu, L., Zhu, N., & Thylen, L. (2009). Technology challenges for monolithically integrated waveguide demultiplexers. Chinese Optics Letters, 7(4), 315-318.
There are 16 citations in total.

Details

Primary Language Turkish
Subjects Electrical Engineering
Journal Section Araştırma Articlessi \ Research Articles
Authors

Onur Erkan 0000-0002-2930-1486

Serkan Şimşek 0000-0003-0964-2176

Publication Date December 19, 2019
Submission Date January 8, 2019
Acceptance Date May 20, 2019
Published in Issue Year 2019

Cite

APA Erkan, O., & Şimşek, S. (2019). FOTONİK KRİSTALLERDE TÜMYÖNLÜ BANT ARALIĞININ İNCELENMESİ. Mühendislik Bilimleri Ve Tasarım Dergisi, 7(4), 744-750. https://doi.org/10.21923/jesd.510403