Research Article
BibTex RIS Cite

BİR BİLEK ORTEZİ İÇİN PASİF REHABİLİTASYON VE DİRENÇLİ EGZERSİZ UYGULAMA MODLARININ GELİŞTİRİLMESİ

Year 2020, , 33 - 41, 20.03.2020
https://doi.org/10.21923/jesd.524191

Abstract

Günümüzde gittikçe artan yaşlı nüfusa ve yaşanan kazalara bağımlı olarak kısmi felçli insan sayısı sürekli artmakta olup gün geçtikçe terapistlerin emek, zaman ve maliyet olarak bu külfeti karşılamaları giderek zorlaşmaktadır. Robotik rehabilitasyon ise ev ortamı rahatlığında daha uzun süreli ve düşük maliyetli bir tedavi seçeneği sunmakta olup bu cihazlar yardımıyla tekrarlanabilir, ölçülebilir ve kontrol edilebilir uzuv hareketlerin yaptırılması oldukça kolaydır. Bu çalışmada el bileği rehabilitasyonu için geliştirilmiş olan bir aktif bilek ortezine hem pasif rehabilitasyon hem de dirençli egzersiz uygulamalarının yaptırılması amacıyla iki ayrı denetim modu daha eklenerek bir bilek rehabilitasyonunda ihtiyaç duyulacak tüm gereksinimlerin tek bir cihaz ile karşılanabilmesi sağlanmıştır. 

References

  • Bruder, A.M., Taylor, N.F., Dodd, K.J., Shields, N., 2013. Physiotherapy intervention practice patterns used in rehabilitation after distal radial fracture. Physiotherapy, 99 (3), 233-240.
  • Cauraugh, J.H., Summers, J.J., 2005. Neural plasticity and bilateral movements: A rehabilitation approach for chronic stroke. Progress in Neurobiology, 75 (5), 309-320.
  • Chapuis, D., Grave, R.B., Lambercy, O., Gassert, R., 2010. ReFlex, a Haptic Wrist Interface for Motor Learning and Rehabilitation. IEEE Haptics Symposium, 25-26 March, Waltham, Massachusetts, USA.
  • Colombo, G., Wirz, M., Dietz, V., 2001. Driven gait orthosis for improvement of locomotor training in paraplegic patients. Spinal Cord, 39, 252-255.
  • Dean, C.M., Richards, C.L., Malouin, F., 2000. Task-related circuit training improves performance of locomotor tasks in chronic stroke: A randomized, controlled pilot trial. Archives of Physical Medicine and Rehabilitation, 81 (4), 409-417.
  • Erdoğan, A., Satıcı, A.C., Patoglu, V. 2011. Passive Velocity Field Control of a Forearm-Wrist Rehabilitation Robot. IEEE International Conference on Rehabilitation Robotics, Zurich, Switzerland.
  • Kahn, L.E., Zygman, M.L., Rymer, W.Z., Reinkensmeyer, D.J., 2006. Robot-assisted reaching exercise promotes arm movement recovery in chronic hemiparetic stroke: a randomized controlled pilot study. Journal of NeuroEngineering and Rehabilitation, 3, 1-12.
  • Kang, Y-S., Park, Y-G., Lee, B-S., Park, H-Y. 2013. Biomechanical evaluation of wrist-driven flexor hinge orthosis in persons with spinal cord injury. Journal of Rehabilitation Research & Development, 50 (8), 1129-1138.
  • Kılıç, E., Doğan, E., 2017. Aktif bir bilek ortez tasarımı ve üretimi. Gazi Üniversitesi Fen Bilimleri Dergisi Part C: Tasarım ve Teknoloji, 5 (1), 33-44.
  • Kılıç, E., Doğan, E., 2018. Aktif bir bilek ortezin kinematik ve kinetik analizleri. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 24(1), 50-62.
  • Kilic, E., 2017. EMG based neural network and admittance control of an active wrist orthosis. Journal of Mechanical Science and Technology, 31 (12), 6093-6106.
  • Kilic, E., Dogan, E., 2017. Design and fuzzy logic control of an active wrist orthosis. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 231 (8), 728-746.
  • Krebs, H.I., Hogan, N., Aisen, M.L., Volpe, B.T., 1998. Robot–aided neurorehabilitation. IEEE Transactions on Rehabilitation Engineering, 6 (1), 75-87.
  • Kubota, S., Nakata, Y., Eguchi, K., Kawamoto, H., Kamibayashi, K., Sakane, M., Sankai, Y., Ochiai, N., 2013. Feasibility of rehabilitation training with a newly developed wearable robot for patients with limited mobility. Archives of Physical Medicine and Rehabilitation, 94 (6), 1080-1087.
  • Kutner, N.G., Zhang, R., Butler, A.J., Wollf, S.L., Alberts, J.L., 2010. Quality-of-Life Change Associated With Robotic-Assisted Therapy to Improve Hand Motor Function in Patients With Subacute Stroke: A Randomized Clinical Trial. Physical Therapy, 90 (4), 493–504.
  • Lum, P.S., Burgar, C.G., Shor, P.C., Majmundar, M., Van der Loos, M., 2002. Robot-assisted movement training compared with conventional therapy techniques for the rehabilitation of upper-limb motor function after stroke. Archives of Physical Medicine and Rehabilitation, 83 (7), 952-959.
  • O’Neill, T.W. et al. 2001. Incidence of distal forearm fracture in Biritish men and women. Osteoporosis International, 12 (7), 555-558.
  • Squeri, V., Masia, L., Giannoni, P., Sandini, G., Morasso, P. 2014. Wrist Rehabilitation in Chronic Stroke Patiients by Means of Adaptive, Progressive Robot-Aided Therapy. IEEE Transactions On Neural Systems and Rehabilitation Engineering, 22 (2), 312-325.
  • Takahashi, C.D., Der-Yeghiaian, L., Le, V., Motiwala, R.R., Cramer, S.C., 2008. Robot-based hand motor therapy after stroke. Brain, 131, 425-437.

DEVELOPMENT OF PASSIVE REHABILITATION AND RESISTIVE EXERCISE APPLICATION MODES FOR A WRIST ORTHOSIS

Year 2020, , 33 - 41, 20.03.2020
https://doi.org/10.21923/jesd.524191

Abstract

Nowadays, the number of people with hemiplegia is constantly increasing due to the cumulative elderly population and accidents, henceforth; it is becoming difficult for therapists to meet this burden as labor, time and cost. Robotic rehabilitation provides a longer lasting and cost-effective treatment option in the comfort of home environment, and it is very easy to make repeatable, measurable and controllable limb movements with the help of these devices. In this study, two separate control modes were added to an active wrist orthosis developed for wrist rehabilitation in order to perform both passive rehabilitation and resistive exercise applications, therefore; it is ensured that all the requirements that will be needed in a wrist rehabilitation can be met with a single device. 

References

  • Bruder, A.M., Taylor, N.F., Dodd, K.J., Shields, N., 2013. Physiotherapy intervention practice patterns used in rehabilitation after distal radial fracture. Physiotherapy, 99 (3), 233-240.
  • Cauraugh, J.H., Summers, J.J., 2005. Neural plasticity and bilateral movements: A rehabilitation approach for chronic stroke. Progress in Neurobiology, 75 (5), 309-320.
  • Chapuis, D., Grave, R.B., Lambercy, O., Gassert, R., 2010. ReFlex, a Haptic Wrist Interface for Motor Learning and Rehabilitation. IEEE Haptics Symposium, 25-26 March, Waltham, Massachusetts, USA.
  • Colombo, G., Wirz, M., Dietz, V., 2001. Driven gait orthosis for improvement of locomotor training in paraplegic patients. Spinal Cord, 39, 252-255.
  • Dean, C.M., Richards, C.L., Malouin, F., 2000. Task-related circuit training improves performance of locomotor tasks in chronic stroke: A randomized, controlled pilot trial. Archives of Physical Medicine and Rehabilitation, 81 (4), 409-417.
  • Erdoğan, A., Satıcı, A.C., Patoglu, V. 2011. Passive Velocity Field Control of a Forearm-Wrist Rehabilitation Robot. IEEE International Conference on Rehabilitation Robotics, Zurich, Switzerland.
  • Kahn, L.E., Zygman, M.L., Rymer, W.Z., Reinkensmeyer, D.J., 2006. Robot-assisted reaching exercise promotes arm movement recovery in chronic hemiparetic stroke: a randomized controlled pilot study. Journal of NeuroEngineering and Rehabilitation, 3, 1-12.
  • Kang, Y-S., Park, Y-G., Lee, B-S., Park, H-Y. 2013. Biomechanical evaluation of wrist-driven flexor hinge orthosis in persons with spinal cord injury. Journal of Rehabilitation Research & Development, 50 (8), 1129-1138.
  • Kılıç, E., Doğan, E., 2017. Aktif bir bilek ortez tasarımı ve üretimi. Gazi Üniversitesi Fen Bilimleri Dergisi Part C: Tasarım ve Teknoloji, 5 (1), 33-44.
  • Kılıç, E., Doğan, E., 2018. Aktif bir bilek ortezin kinematik ve kinetik analizleri. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 24(1), 50-62.
  • Kilic, E., 2017. EMG based neural network and admittance control of an active wrist orthosis. Journal of Mechanical Science and Technology, 31 (12), 6093-6106.
  • Kilic, E., Dogan, E., 2017. Design and fuzzy logic control of an active wrist orthosis. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 231 (8), 728-746.
  • Krebs, H.I., Hogan, N., Aisen, M.L., Volpe, B.T., 1998. Robot–aided neurorehabilitation. IEEE Transactions on Rehabilitation Engineering, 6 (1), 75-87.
  • Kubota, S., Nakata, Y., Eguchi, K., Kawamoto, H., Kamibayashi, K., Sakane, M., Sankai, Y., Ochiai, N., 2013. Feasibility of rehabilitation training with a newly developed wearable robot for patients with limited mobility. Archives of Physical Medicine and Rehabilitation, 94 (6), 1080-1087.
  • Kutner, N.G., Zhang, R., Butler, A.J., Wollf, S.L., Alberts, J.L., 2010. Quality-of-Life Change Associated With Robotic-Assisted Therapy to Improve Hand Motor Function in Patients With Subacute Stroke: A Randomized Clinical Trial. Physical Therapy, 90 (4), 493–504.
  • Lum, P.S., Burgar, C.G., Shor, P.C., Majmundar, M., Van der Loos, M., 2002. Robot-assisted movement training compared with conventional therapy techniques for the rehabilitation of upper-limb motor function after stroke. Archives of Physical Medicine and Rehabilitation, 83 (7), 952-959.
  • O’Neill, T.W. et al. 2001. Incidence of distal forearm fracture in Biritish men and women. Osteoporosis International, 12 (7), 555-558.
  • Squeri, V., Masia, L., Giannoni, P., Sandini, G., Morasso, P. 2014. Wrist Rehabilitation in Chronic Stroke Patiients by Means of Adaptive, Progressive Robot-Aided Therapy. IEEE Transactions On Neural Systems and Rehabilitation Engineering, 22 (2), 312-325.
  • Takahashi, C.D., Der-Yeghiaian, L., Le, V., Motiwala, R.R., Cramer, S.C., 2008. Robot-based hand motor therapy after stroke. Brain, 131, 425-437.
There are 19 citations in total.

Details

Primary Language Turkish
Subjects Mechanical Engineering
Journal Section Araştırma Articlessi \ Research Articles
Authors

Ergin Kılıç 0000-0002-3099-0303

Özgür Başer 0000-0002-7284-9797

Publication Date March 20, 2020
Submission Date February 8, 2019
Acceptance Date July 10, 2019
Published in Issue Year 2020

Cite

APA Kılıç, E., & Başer, Ö. (2020). BİR BİLEK ORTEZİ İÇİN PASİF REHABİLİTASYON VE DİRENÇLİ EGZERSİZ UYGULAMA MODLARININ GELİŞTİRİLMESİ. Mühendislik Bilimleri Ve Tasarım Dergisi, 8(1), 33-41. https://doi.org/10.21923/jesd.524191

Cited By