Research Article
BibTex RIS Cite

VALIDATION OF THE GREEN’S FUNCTIONS RETRIEVED FROM AMBIENT NOISE BY ANDIRIN EARTHQUAKE IN THE ADANA BASIN

Year 2020, , 671 - 676, 24.09.2020
https://doi.org/10.21923/jesd.675138

Abstract

The vertical component continuous data recorded by the national seismological networks (Kandilli Observatory and Earthquake Research Institute (KOERI) of Bosporus University and Earthquake Research Department (ERD) of Disaster and Emergency Management Presidency of Turkey) in the Adana Basin (Southeastern Turkey) are used to retrieve the Green’s functions between two stations. The noise data were cut into 1-hour segments, scanned for the gaps caused by transmission drop-outs, preprocessed by removing the trend, mean and instrument response, down sampled to 10sps and low-pass filtered at 50s. Then the hourly cross-correlations are computed and stacked and the Green’s functions between two stations are retrieved. To validate the retrieved Green’s functions, the Andirin earthquake of magnitude 5 occurred on 22.07.2012 near the station Andirin (ANDN) is used. By using the ANDN station as the virtual source, the Green’s functions at KARA, KMRS, KIZK, MERS and YAYL stations are compared with the real earthquake seismograms. The agreement between the earthquake seismograms and the retrieved Green’s functions suggests that the Rayleigh wave group velocities can reliably be estimated for the region by using ambient noise data.

Supporting Institution

TUBITAK

Project Number

No. 1929B011200045 (TÜBITAK-2218).

Thanks

I am sincerely grateful to my advisors H. Argun Kocaoglu and Ayse Kaslilar Sisman for their continuous supports, scientific guidance, patience, motivation, enthusiasm.

References

  • Asano, K., Tomotaka, I., Sekiguchi H., Somei, K., Miyakoshi, K., Aoi, S., Kunugi, T., 2017. Surface wave group velocity in the Osaka sedimentary basin, Japan, estimated using ambient noise cross‑correlation functions. Earth, Planets and Space vol.69, pp 108. doi 10.1186/s40623-017-0694-3.
  • Bao, F., Ni, S., Xie J., Zeng, X., Li, Z., Li, Z., 2014. Validating Accuracy of Rayleigh-Wave Dispersion Extracted from Ambient Seismic Noise Via Comparison with Data from a Ground-Truth Earthquake, Bulletin of the Seismological Society of America, Vol. 104, No. 4, pp., doi: 10.1785/0120130279
  • Barmin, M.P., A.L. Levshin, Y. Yang, and Ritzwoller M.H., 2011. Epicentral Location Based on Rayleigh Wave Empirical Green's Functions from Ambient Seismic Noise, Geophys. J. Int., 184, 869-884, doi: 10.1111/j.1365-246X.2010.04879.x.
  • Bensen, G.D., Ritzwoller, M.H. and Yang, Y., 2009. A 3D shear velocity model of the crust and uppermost mantle beneath the United States from ambient seismic noise, Geophys. J. Int., 177(3), 1177-1196.
  • Bensen, G.D., Ritzwoller, M.H., Barmin, M.P., Levshin, A.L., Lin, F., Moschetti, M.P., Shapiro, N.M., Yang, Y., 2007. Processing seismic ambient noise data to obtain reliable broad-band surface wave dispersion measurements, Geophys. J. Int., doi:10.1111/j.1365-246X.2007.03374, 169, 1239–1260.
  • Bensen, G.D., Ritzwoller, M.H., Shapiro, N. M., 2008. Broad-band ambient noise surface wave tomography across the United States, J. Geophys. Res., doi:10.1029/2007JB005248, 113, 1-21.
  • Campillo, M., and Paul, A., 2003. Long-range correlations in the diffuse seismic coda. Science 299: 547−549.
  • Crowder, E., Rawlinson, N., Pilia, S., Cornwell, D. G., Reading., A. M., 2019. Transdimensional ambient noise tomography of Bass Strait, southeast Australia, reveals the sedimentary basin and deep crustal structure beneath a failed continental rift. Geophys. J. Int.,217, 970–987 doi: 10.1093/gji/ggz057.
  • Derode, A.,Larose, E., Tanter, M., de Rosny, J., Tourin, A. Campillo, M., Fink, M., 2003. Recovering the Green’s function from field correlations in an open scattering medium (L), J. Acoust. Soc. Am., 113, 2973– 2976.
  • Emry, E. L., Shen, Y., Nyblade, A. A., Flinders, A., Bao, X., 2019. Upper mantle Earth structure in Africa from full-wave ambient noise tomography. Geochemistry, Geophysics, Geosystems, 20, 120–147. https://doi.org/10.1029/ 2018GC007804.
  • Gao, H., Humphreys, E. D., Yao, H., Van der Hilst, R. D., 2011. Crustal and lithosphere structure of the Pacific Northwest with ambient noise tomography: Terrane accretion and Cascade arc development, Earth. Planet. Sci. Lett., doi:10.1016/j.epsl.2011.01.033.
  • Larose, E., Derode, A., Corennec, D., Margerin, L., Campillo, M., 2005. Passive retrieval of Rayleigh waves in disordered elastic media, Phys. Rev. E., 72, 046607, doi:10.113/PhysRevE.72.046607.
  • Lin, F., Moschetti, M. P. , Ritzwoller, M. H., 2008. Surface wave tomography of the western United States from ambient seismic noise: Rayleigh and Love wave phase velocity maps, Geophys. J. Int., doi:10.1111/ j1365-246X.2008.03720.x.
  • Lin, F., Ritzwoller, M. H., Townend, J. and Bannister, M., 2007. Ambient noise Rayleigh wave tomography of New Zealand. Geophys. J. Int., doi:10.1111/j.1365-246X.2007.03414.x
  • Lü, Z., and Lei, J. 2018. Shear-wave velocity structure beneath the central Tien Shan (NW China) from seismic ambient noise tomography. Journal of Asian Earth Sciences 163 (2018) 80–89.
  • Mordret, A., Rivet, D., Landès, M., Shapiro, N. M., 2015. Three-dimensional shear velocity anisotropic model of Piton de la Fournaise Volcano (La Réunion Island) from ambient seismic noise, J. Geophys. Res. Solid Earth, 120, 406–427, doi:10.1002/2014JB011654.
  • Ouattara, Y., Zigone D., Maggi A., 2019. Rayleigh wave group velocity dispersion tomography of West Africa using regional earthquakes, J Seismol (2019) 23:1201–1221, doi: 10.1007/s10950-019-09860-z
  • Pawlak, A., Eaton, D.W., Bastow, I.D., Kendall, J-M., Helffrich, G., Wookey, J. and Snyder, D., 2011.Crustal structure beneath Hudson Bay from ambient-noise tomography: implications for basin formation. Geophys. J. Int., 184, 65-82.
  • Sabra, K.G., Gerstoft, P., Roux, P., Kuperman, W.A., 2005. Surface wave tomography from microseisms in Southern California, Geophys. Res. Lett., 32, L14311, doi:10.1029/2005GL023155.
  • Schuster G T., 2009. Seismic Interferometry. Cambridge University Press, Cambridge, 260 pp.
  • Shapiro N.M., and Campillo M., 2004. Emergence of broadband Rayleigh waves from correlations of the ambient seismic noise, Geophys. Res. Letters, VOL. 31, L07614, doi:10.1029/2004GL019491
  • Shapiro, N. M., Campillo, M., Stehly, L., Ritzwoller, M.H., 2005. High- resolution surface-wave tomography from ambient seismic noise, Science, 29, 1615–1617.
  • Snieder, R., 2004. Extracting the Green’s function from the correlation of coda waves: A derivation based on stationary phase, Phys. Rev. E, 69, 046610.
  • Wapenaar, K., 2003. Synthesis of an inhomogeneous medium from its acoustic transmission response: Geophysics, Vol. 68, 1756-1759.
  • Wapenaar, K., 2004. Retrieving the elastodynamic Green’s function of an arbitrary inhomogeneous medium by cross correlation, Phys. Rev. Lett., 93, 254301.
  • Wapenaar, K. and Fokkema, J., 2006. Green’s functions representations for seismic interferometry, Geophysics, 71, SI33–SI46.
  • Wapenaar, K., Draganov, D., Sneider, R., Campman, X., Verdel A., 2010a. Tutorial on seismic interferometry: Part 1- Basic principles and applications. Geophyics,75(5), P.75A195-209 doi:10.1190/1.3457445.
  • Wapenaar, K., Slob, E., Sneider, R., Curtis, A., 2010b. Tutorial on seismic interferometry: Part 2- Underlying theory and new advances. Geophyics, 75(5), P.75A211-227 doi:10.1190/1.3463440.
  • Weaver, R. L., and O. I. Lobkis 2001a., Ultrasonics without a source: Thermal fluctuation correlation at MHz frequencies, Phys. Rev. Lett., 87, paper 134301.
  • Weaver, R. L., and O. I. Lobkis, 2001b. On the emergence of the Green’s function in the correlations of a diffuse field, J. Acoust. Soc. Am., 110, 3011–3017.
  • Wessel,P. and Smith,W.H.F.,1998. New,improvedversionofgenericmapping tools released, EOS, Trans. Am. geophys. Un., 79 (47), 579–579
  • Yang, Y., Zheng, Y., Chen, J., Zhou, S., Celyan, S., Sandvol, E., Tilmann, F., Priestley, K., Hearn, T. M., Ni, J. F., Broewn, L. D., Ritzwoller, M. H., 2010. Rayleigh wave phase velocity maps of Tibet and the surrounding regions from ambient seismic noise tomography. AGU 100 Geochemistry, Geophysics, Geosystems, doi.org/10.1029/2010GC003119.
  • Zeng, X., and Thurber. C., 2019. Three-dimensional shear wave velocity structure revealed with ambient noise tomography in the Parkfield, California region. Physics of the Earth and Planetary Interiors vol. 292, pp. 67–75.

ARTALAN SİSMİK GÜRÜLTÜ VERİLERİNDEN ELDE EDİLEN GREEN FONKSİYONLARININ GEÇERLİLİĞİNİN ADANA HAVZASINDAKİ ANDIRIN DEPREMİ İLE DOĞRULANMASI

Year 2020, , 671 - 676, 24.09.2020
https://doi.org/10.21923/jesd.675138

Abstract

İki istasyon arasındaki Green fonksiyonlarının elde edilmesinde Adana Havzasında (Güneydoğu Türkiye), Boğaziçi Üniversitesi, Kandilli Rasathanesi ve Deprem Araştırma Enstitüsü (KRDAE) ve Türkiye Afet ve Acil Durum Yönetimi Başkanlığı Deprem Araştırma Dairesi (DAD) tarafından işletilen ulusal sismolojik ağlarda toplanan düşey bileşen sürekli veriler kullanılmıştır. Artalan Sismik Gürültü (ASG) verileri 1’er saatlik dilimler halinde kesilip, veri aktarımındaki kopmalar nedeniyle oluşan boşluklar tarandıktan sonra, verilere trend giderme, ortalama alma, cihaz tepkisinin giderilmesi, 10 sps örnekleme ve 50s alçak geçişli süzgeç ön işlemleri uygulanmıştır. Ardından 1 saatlik çapraz ilişki fonksiyonlarının hesaplanması ve yığmaları ile iki istasyon arasındaki Green fonksiyonları elde edilmiştir. Green fonksiyonlarını doğrulamak için 22.07.2012 tarihinde Andırın (ANDN) istasyonunun yakınında meydana gelen 5.0 (Ml) büyüklüğündeki Andırın depremi kullanılmıştır. ANDN istasyonunu sanal kaynak olarak kullanarak, KARA, KMRS, KIZK, MERS ve YAYL istasyonları ile ANDN istasyonu arasında elde edilen Green fonksiyonları ile gerçek deprem sismogramları ile karşılaştırılmıştır. Deprem sismogramları ve hesaplanan Green fonksiyonları arasındaki uyum, Rayleigh dalgası grup hızlarının, ASG verilerinden bu bölge için güvenilir bir şekilde belirlenebileceğini göstermektedir.

Project Number

No. 1929B011200045 (TÜBITAK-2218).

References

  • Asano, K., Tomotaka, I., Sekiguchi H., Somei, K., Miyakoshi, K., Aoi, S., Kunugi, T., 2017. Surface wave group velocity in the Osaka sedimentary basin, Japan, estimated using ambient noise cross‑correlation functions. Earth, Planets and Space vol.69, pp 108. doi 10.1186/s40623-017-0694-3.
  • Bao, F., Ni, S., Xie J., Zeng, X., Li, Z., Li, Z., 2014. Validating Accuracy of Rayleigh-Wave Dispersion Extracted from Ambient Seismic Noise Via Comparison with Data from a Ground-Truth Earthquake, Bulletin of the Seismological Society of America, Vol. 104, No. 4, pp., doi: 10.1785/0120130279
  • Barmin, M.P., A.L. Levshin, Y. Yang, and Ritzwoller M.H., 2011. Epicentral Location Based on Rayleigh Wave Empirical Green's Functions from Ambient Seismic Noise, Geophys. J. Int., 184, 869-884, doi: 10.1111/j.1365-246X.2010.04879.x.
  • Bensen, G.D., Ritzwoller, M.H. and Yang, Y., 2009. A 3D shear velocity model of the crust and uppermost mantle beneath the United States from ambient seismic noise, Geophys. J. Int., 177(3), 1177-1196.
  • Bensen, G.D., Ritzwoller, M.H., Barmin, M.P., Levshin, A.L., Lin, F., Moschetti, M.P., Shapiro, N.M., Yang, Y., 2007. Processing seismic ambient noise data to obtain reliable broad-band surface wave dispersion measurements, Geophys. J. Int., doi:10.1111/j.1365-246X.2007.03374, 169, 1239–1260.
  • Bensen, G.D., Ritzwoller, M.H., Shapiro, N. M., 2008. Broad-band ambient noise surface wave tomography across the United States, J. Geophys. Res., doi:10.1029/2007JB005248, 113, 1-21.
  • Campillo, M., and Paul, A., 2003. Long-range correlations in the diffuse seismic coda. Science 299: 547−549.
  • Crowder, E., Rawlinson, N., Pilia, S., Cornwell, D. G., Reading., A. M., 2019. Transdimensional ambient noise tomography of Bass Strait, southeast Australia, reveals the sedimentary basin and deep crustal structure beneath a failed continental rift. Geophys. J. Int.,217, 970–987 doi: 10.1093/gji/ggz057.
  • Derode, A.,Larose, E., Tanter, M., de Rosny, J., Tourin, A. Campillo, M., Fink, M., 2003. Recovering the Green’s function from field correlations in an open scattering medium (L), J. Acoust. Soc. Am., 113, 2973– 2976.
  • Emry, E. L., Shen, Y., Nyblade, A. A., Flinders, A., Bao, X., 2019. Upper mantle Earth structure in Africa from full-wave ambient noise tomography. Geochemistry, Geophysics, Geosystems, 20, 120–147. https://doi.org/10.1029/ 2018GC007804.
  • Gao, H., Humphreys, E. D., Yao, H., Van der Hilst, R. D., 2011. Crustal and lithosphere structure of the Pacific Northwest with ambient noise tomography: Terrane accretion and Cascade arc development, Earth. Planet. Sci. Lett., doi:10.1016/j.epsl.2011.01.033.
  • Larose, E., Derode, A., Corennec, D., Margerin, L., Campillo, M., 2005. Passive retrieval of Rayleigh waves in disordered elastic media, Phys. Rev. E., 72, 046607, doi:10.113/PhysRevE.72.046607.
  • Lin, F., Moschetti, M. P. , Ritzwoller, M. H., 2008. Surface wave tomography of the western United States from ambient seismic noise: Rayleigh and Love wave phase velocity maps, Geophys. J. Int., doi:10.1111/ j1365-246X.2008.03720.x.
  • Lin, F., Ritzwoller, M. H., Townend, J. and Bannister, M., 2007. Ambient noise Rayleigh wave tomography of New Zealand. Geophys. J. Int., doi:10.1111/j.1365-246X.2007.03414.x
  • Lü, Z., and Lei, J. 2018. Shear-wave velocity structure beneath the central Tien Shan (NW China) from seismic ambient noise tomography. Journal of Asian Earth Sciences 163 (2018) 80–89.
  • Mordret, A., Rivet, D., Landès, M., Shapiro, N. M., 2015. Three-dimensional shear velocity anisotropic model of Piton de la Fournaise Volcano (La Réunion Island) from ambient seismic noise, J. Geophys. Res. Solid Earth, 120, 406–427, doi:10.1002/2014JB011654.
  • Ouattara, Y., Zigone D., Maggi A., 2019. Rayleigh wave group velocity dispersion tomography of West Africa using regional earthquakes, J Seismol (2019) 23:1201–1221, doi: 10.1007/s10950-019-09860-z
  • Pawlak, A., Eaton, D.W., Bastow, I.D., Kendall, J-M., Helffrich, G., Wookey, J. and Snyder, D., 2011.Crustal structure beneath Hudson Bay from ambient-noise tomography: implications for basin formation. Geophys. J. Int., 184, 65-82.
  • Sabra, K.G., Gerstoft, P., Roux, P., Kuperman, W.A., 2005. Surface wave tomography from microseisms in Southern California, Geophys. Res. Lett., 32, L14311, doi:10.1029/2005GL023155.
  • Schuster G T., 2009. Seismic Interferometry. Cambridge University Press, Cambridge, 260 pp.
  • Shapiro N.M., and Campillo M., 2004. Emergence of broadband Rayleigh waves from correlations of the ambient seismic noise, Geophys. Res. Letters, VOL. 31, L07614, doi:10.1029/2004GL019491
  • Shapiro, N. M., Campillo, M., Stehly, L., Ritzwoller, M.H., 2005. High- resolution surface-wave tomography from ambient seismic noise, Science, 29, 1615–1617.
  • Snieder, R., 2004. Extracting the Green’s function from the correlation of coda waves: A derivation based on stationary phase, Phys. Rev. E, 69, 046610.
  • Wapenaar, K., 2003. Synthesis of an inhomogeneous medium from its acoustic transmission response: Geophysics, Vol. 68, 1756-1759.
  • Wapenaar, K., 2004. Retrieving the elastodynamic Green’s function of an arbitrary inhomogeneous medium by cross correlation, Phys. Rev. Lett., 93, 254301.
  • Wapenaar, K. and Fokkema, J., 2006. Green’s functions representations for seismic interferometry, Geophysics, 71, SI33–SI46.
  • Wapenaar, K., Draganov, D., Sneider, R., Campman, X., Verdel A., 2010a. Tutorial on seismic interferometry: Part 1- Basic principles and applications. Geophyics,75(5), P.75A195-209 doi:10.1190/1.3457445.
  • Wapenaar, K., Slob, E., Sneider, R., Curtis, A., 2010b. Tutorial on seismic interferometry: Part 2- Underlying theory and new advances. Geophyics, 75(5), P.75A211-227 doi:10.1190/1.3463440.
  • Weaver, R. L., and O. I. Lobkis 2001a., Ultrasonics without a source: Thermal fluctuation correlation at MHz frequencies, Phys. Rev. Lett., 87, paper 134301.
  • Weaver, R. L., and O. I. Lobkis, 2001b. On the emergence of the Green’s function in the correlations of a diffuse field, J. Acoust. Soc. Am., 110, 3011–3017.
  • Wessel,P. and Smith,W.H.F.,1998. New,improvedversionofgenericmapping tools released, EOS, Trans. Am. geophys. Un., 79 (47), 579–579
  • Yang, Y., Zheng, Y., Chen, J., Zhou, S., Celyan, S., Sandvol, E., Tilmann, F., Priestley, K., Hearn, T. M., Ni, J. F., Broewn, L. D., Ritzwoller, M. H., 2010. Rayleigh wave phase velocity maps of Tibet and the surrounding regions from ambient seismic noise tomography. AGU 100 Geochemistry, Geophysics, Geosystems, doi.org/10.1029/2010GC003119.
  • Zeng, X., and Thurber. C., 2019. Three-dimensional shear wave velocity structure revealed with ambient noise tomography in the Parkfield, California region. Physics of the Earth and Planetary Interiors vol. 292, pp. 67–75.
There are 33 citations in total.

Details

Primary Language English
Subjects Geological Sciences and Engineering (Other)
Journal Section Research Articles
Authors

Taciser Bakırcı 0000-0001-9585-1374

Project Number No. 1929B011200045 (TÜBITAK-2218).
Publication Date September 24, 2020
Submission Date January 15, 2020
Acceptance Date June 21, 2020
Published in Issue Year 2020

Cite

APA Bakırcı, T. (2020). VALIDATION OF THE GREEN’S FUNCTIONS RETRIEVED FROM AMBIENT NOISE BY ANDIRIN EARTHQUAKE IN THE ADANA BASIN. Mühendislik Bilimleri Ve Tasarım Dergisi, 8(3), 671-676. https://doi.org/10.21923/jesd.675138