Research Article
BibTex RIS Cite

TİTANYUM NİTRİT NANOÇUBUK TABANLI GRAFEN İLE AYARLANABİLİR ORTA-KIZILÖTESİ METAMALZEMELER

Year 2020, , 1269 - 1277, 25.12.2020
https://doi.org/10.21923/jesd.816906

Abstract

Plazmonik malzeme olarak titanyum nitrit kullanan, grafen ile ayarlanabilir, parçacık ve soğurucu tabanlı metamalzemeler sunulmuştur. Parçacık tabanlı nanoantenin tasarımı, parametre değişimi benzetimleri ile sunulmuştur. Ayrıca, rezonans modlarının kökeni, çok kutuplu modların, tasarlanan yapının tayfına katkılarının belirlenmesi ve yakın alan güçlendirme dağılım haritaları ile ortaya konmuştur. Buna ek olarak, tasarlanan metamalzemenin ayarlanabilirliği, yapının üzerine kaplanmış tek katman grafenin kimyasal potansiyelinin değiştirilmesi ile gösterilmiştir. Tasarlanan cihazın soğurucu metamalzeme olarak kullanılabilmesi amacıyla, yapıdan elektromanyetik geçirgenliği elimine etmek için bir ayna katmanı eklenmiştir. Soğurmanın mükemmel olması için, fonksiyonel yapıların kalınlıkları, parametre değişimi benzetimleri ile optimize edilmiştir. Son olarak, soğurucu yapının ayarlanabilirliği, nanoantenlerin üzerine tek katmanlı grafenin kaplanması ile sağlanmıştır ve parçacık ve soğurucu tabanlı metamalzemelerin ayarlanabilirlik performansları karşılaştırılmıştır. Grafen ile ayarlanabilir, metal kullanılmayan metamalzemelerin mühendisliği, düşük maliyetli tümleşik fotonik cihazların ve yüksek sıcaklıklara dayanıklı plazmonik cihazların geliştirilebilmesi için yeni bir strateji sağlamaktadır.

Project Number

19.M.016

References

  • Andryieuski, A., Lavrinenko, A. V., 2013. Graphene Metamaterials Based Tunable Terahertz Absorber: Effective Surface Conductivity Approach. Optics Express, 21(7), 9144.
  • Aslan, E., 2020. Conformal Talbot-Effect-Focusing Performance of Nested Gallium-Doped Zinc Oxide Nanorings at Communication Wavelength. Photonics and Nanostructures - Fundamentals and Applications, 42, 100839.
  • Aslan, E., Aslan, E., Wang, R., Hong, M. K., Erramilli, S., Turkmen, M., Saracoglu, O. G., Dal Negro, L., 2016. Multispectral Cesaro-Type Fractal Plasmonic Nanoantennas. ACS Photonics, 3(11), 2102–2111.
  • Aslan, E., Aslan, E., Saracoglu, O. G., Turkmen, M., 2019. An Effective Triple-Band Enhanced-Infrared-Absorption Detection by Honeycomb-Shaped Metamaterial-Plasmonic Absorber. Sensors and Actuators A: Physical, 288, 149–155.
  • Bagheri, S., Zgrabik, C. M., Gissibl, T., Tittl, A., Sterl, F., Walter, R., De Zuani, S., Berrier, A., Stauden, T., Richter, G., Hu, E. L., Giessen, H., 2015. Large-Area Fabrication of TiN Nanoantenna Arrays for Refractory Plasmonics in the Mid-Infrared by Femtosecond Direct Laser Writing and Interference Lithography [Invited]. Optical Materials Express, 5(11), 2625–2633.
  • Bang, S., Kim, J., Yoon, G., Tanaka, T., Rho, J., 2018. Recent Advances in Tunable and Reconfigurable Metamaterials. Micromachines, 9(11), 560.
  • Cao, J., Sun, T., Grattan, K. T. V., 2014. Gold Nanorod-Based Localized Surface Plasmon Resonance Biosensors: A Review. Sensors and Actuators B: Chemical, 195, 332–351.
  • Cen, C., Lin, H., Huang, J., Liang, C., Chen, X., Tang, Y., Yi, Z., Ye, X., Liu, J., Yi, Y., Xiao, S., 2018. A Tunable Plasmonic Refractive Index Sensor with Nanoring-Strip Graphene Arrays. Sensors, 18(12), 4489.
  • Chen, J., Wang, Y., Jia, B., Geng, T., Li, X., Feng, L., Qian, W., Liang, B., Zhang, X., Gu, M., Zhuang, S., 2011. Observation of the Inverse Doppler Effect in Negative-Index Materials at Optical Frequencies. Nature Photonics, 5, 239–242.
  • Dietrich, C. P., Fiore, A., Thompson, M. G., Kamp, M., Höfling, S., 2016. GaAs Integrated Quantum Photonics: Towards Compact and Multi-Functional Quantum Photonic Integrated Circuits. Laser and Photonics Reviews, 10(6), 870–894.
  • Dong, Z. G., Zhu, J., Yin, X., Li, J., Lu, C., Zhang, X.,2013. All-Optical Hall Effect by the Dynamic Toroidal Moment in A Cavity-Based Metamaterial. Physical Review B - Condensed Matter and Materials Physics, 87(24), 245429.
  • Fang, J., Huang, J., Gou, Y., Shang, Y., 2020. Research on Broadband Tunable Metamaterial Absorber Based on PIN Diode. Optik, 200, 163171.
  • Gui, L., Bagheri, S., Strohfeldt, N., Hentschel, M., Zgrabik, C. M., Metzger, B., Linnenbank, H., Hu, E. L., Giessen, H., 2016. Nonlinear Refractory Plasmonics with Titanium Nitride Nanoantennas. Nano Letters, 16(9), 5708–5713.
  • Hajian, H., Ghobadi, A., Butun, B., Ozbay, E., 2019. Active Metamaterial Nearly Perfect Light Absorbers: A Review [Invited]. Journal of the Optical Society of America B, 36(8), F131–F143.
  • Hossain, M. M., Jia, B., Gu, M., 2015. A Metamaterial Emitter for Highly Efficient Radiative Cooling. Advanced Optical Materials, 3(8), 1047–1051.
  • Huang, X., He, W., Yang, F., Ran, J., Yang, Q., Xie, S., 2019. Thermally Tunable Metamaterial Absorber Based on Strontium Titanate in the Terahertz Regime. Optical Materials Express, 9(3), 1377.
  • Huang, Y.-W., Chen, W. T., Wu, P. C., Fedotov, V., Savinov, V., Ho, Y. Z., Chau, Y.-F., Zheludev, N. I., Tsai, D. P., 2012. Design of Plasmonic Toroidal Metamaterials at Optical Frequencies. Optics Express, 20(2), 1760–1768.
  • Isic, G., Sinatkas, G., Zografopoulos, D. C., Vasic, B., Ferraro, A., Beccherelli, R., Kriezis, E. E., Belic, M., 2019. Electrically Tunable Metal-Semiconductor-Metal Terahertz Metasurface Modulators. IEEE Journal of Selected Topics in Quantum Electronics, 25(3), 8500108. Jiang, N., Zhuo, X., Wang, J., 2018. Active Plasmonics: Principles, Structures, and Applications. Chemical Reviews, 118(6), 3054–3099.
  • Jin, X., Wang, F., Huang, S., Xie, Z., Li, L., Han, X., Chen, H., Zhou, H., 2019. Coherent Perfect Absorber with Independently Tunable Frequency Based on Multilayer Graphene. Optics Communications, 446, 44–50.
  • Kim, J., Son, H., Cho, D. J., Geng, B., Regan, W., Shi, S., Kim, K., Zettl, A., Shen, Y.R., Wang, F., 2012. Electrical Control of Optical Plasmon Resonance with Graphene. Nano Letters, 12(11), 5598–5602.
  • Li, W., Guler, U., Kinsey, N., Naik, G. V., Boltasseva, A., Guan, J., Shalaev, V. M.,Kildishev, A. V., 2014. Refractory Plasmonics with Titanium Nitride: Broadband Metamaterial Absorber. Advanced Materials, 26(47), 7959–7965.
  • Liu, C., Cai, J., Li, X., Zhang, W., Zhang, D., 2019. Flexible and Tunable Electromagnetic Meta-Atom Based on Silver Nanowire Networks. Materials and Design, 181, 107982.
  • Low, T., Avouris, P., 2014. Graphene Plasmonics for Terahertz to Mid-Infrared Applications. ACS Nano, 8(2), 1086–1101.
  • Min, L., Wang, W., Huang, L., Ling, Y., Liu, T., Liu, J., Luo, C., Zeng, Q., 2019. Direct-Tuning Methods for Semiconductor Metamaterials. Scientific Reports, 9, 17622.
  • Monticone, F., Alù, A., 2014. The Quest for Optical Magnetism: From Split-Ring Resonators to Plasmonic Nanoparticles and Nanoclusters. Journal of Materials Chemistry C, 2, 9059–9072.
  • Naik, G. V., Kim, J., Boltasseva, A., 2011. Oxides and Nitrides as Alternative Plasmonic Materials in the Optical Range [Invited]. Optical Materials Express, 1(6), 1090–1099.
  • Naik, G. V., Shalaev, V. M., Boltasseva, A., 2013. Alternative Plasmonic Materials: Beyond Gold and Silver. Advanced Materials, 25(24), 3264–3294.
  • Nan, H., Chen, Z., Jiang, J., Li, J., Zhao, W., Ni, Z., Gu, X., Xiao, S., 2018. The Effect of Graphene on Surface Plasmon Resonance of Metal Nanoparticles. Physical Chemistry Chemical Physics, 20(38), 25078–25084.
  • Palik, E. D., 1997. Handbook of Optical Constants of Solids. Handbook of Optical Constants of Solids (Vol. I–III), College Park, Maryland, Academic Press.
  • Pendry, J. B., 2000. Negative Refraction Makes a Perfect Lens. Physical Review Letters, 85(18), 3966–3969.
  • Petryayeva, E., Krull, U. J., 2011. Localized Surface Plasmon Resonance: Nanostructures, Bioassays and Biosensing-A Review. Analytica Chimica Acta, 706(1), 8–24.
  • Ren, Z., Chang, Y., Ma, Y., Shih, K., Dong, B., Lee, C., 2019. Leveraging of MEMS Technologies for Optical Metamaterials Applications. Advanced Optical Materials, 1900653.
  • RoyChoudhury, S., Rawat, V., Jalal, A. H., Kale, S. N., Bhansali, S., 2016. Recent Advances in Metamaterial Split-Ring-Resonator Circuits as Biosensors and Therapeutic Agents. Biosensors and Bioelectronics, 86, 595–608. Salemizadeh, M., Mahani, F. F., Mokhtari, A., 2019. Tunable Mid-Infrared Graphene-Titanium Nitride Plasmonic Absorber for Chemical Sensing Applications. Journal of the Optical Society of America B, 36(10), 2863–2870.
  • Schurig, D., Mock, J. J., Justice, B. J., Cummer, S. A., Pendry, J. B., Starr, A. F., Smith, D. R., 2006. Metamaterial Electromagnetic Cloak at Microwave Frequencies. Science, 314(5801), 977–980.
  • Shelby, R. A., Smith, D. R., Schultz, S., 2001. Experimental Verification of a Negative Index of Refraction. Science, 292(5514), 77–79.
  • Shen, N.-H., Kafesaki, M., Koschny, T., Zhang, L., Economou, E. N., Soukoulis, C. M., 2009. Broadband Blueshift Tunable Metamaterials and Dual-Band Switches. Physical Review B - Condensed Matter and Materials Physics, 79(16), 161102.
  • Smith, D. R., Padilla, W. J., Vier, D. C., Nemat-Nasser, S. C., Schultz, S., 2000. Composite Medium with Simultaneously Negative Permeability and Permittivity. Physical Review Letters, 84(18), 4184–4187.
  • Urbas, A. M. et al., 2016. Roadmap on Optical Metamaterials. Journal of Optics, 18(9), 093005.
  • Wang, R., Ren, X.-G., Yan, Z., Jiang, L. J., Sha, W. E. I., Shan, G.-C., 2019. Graphene Based Functional Devices: A Short Review. Frontiers of Physics, 14(1), 13603.
  • Wenclawiak, M., Kainz, M. A., Unterrainer, K., Darmo, J., 2019. Dielectric Control of Localized Plasmons in Terahertz Metamaterials. Photonics and Nanostructures - Fundamentals and Applications, 37, 100734.
  • Xiao, D., Liu, Q., Lei, L., Sun, Y., Ouyang, Z., Tao, K., 2019. Coupled Resonance Enhanced Modulation for a Graphene-Loaded Metamaterial Absorber. Nanoscale Research Letters, 14, 32.
  • Xie, Y., Fan, X., Wilson, J. D., Simons, R. N., Chen, Y., Xiao, J. Q., 2014. A Universal Electromagnetic Energy Conversion Adapter Based on a Metamaterial Absorber. Scientific Reports, 4(1), 6301.
  • Ye, L., Zeng, F., Zhang, Y., Liu, Q. H., 2019. Composite Graphene-Metal Microstructures for Enhanced Multiband Absorption Covering the Entire Terahertz Range. Carbon, 148, 317–325.
  • Zhang, J., Wei, X., Rukhlenko, I. D., Chen, H.-T., Zhu, W., 2020. Electrically Tunable Metasurface with Independent Frequency and Amplitude Modulations. ACS Photonics, 7(1), 265–271.
  • Zhang, Y., Li, T., Chen, Q., Zhang, H., O’Hara, J. F., Abele, E., Taylor, J., Chen, H.T., Azad, A. K., 2016. Independently Tunable Dual-Band Perfect Absorber Based on Graphene at Mid-Infrared Frequencies. Scientific Reports, 5, 18463.
  • Zhao, X., Fan, K., Zhang, J., Seren, H. R., Metcalfe, G. D., Wraback, M., Averitt, R.D., Zhang, X., 2015. Optically Tunable Metamaterial Perfect Absorber on Highly Flexible Substrate. Sensors and Actuators, A: Physical, 231, 74–80.
  • Zhong, Y., Malagari, S. D., Hamilton, T., Wasserman, D., 2015. Review of Mid-Infrared Plasmonic Materials. Journal of Nanophotonics, 9(1), 093791.
  • Zou, Y., Cao, J., Gong, X., Qian, R., An, Z., 2019. Ultrathin and Electrically Tunable Metamaterial with Nearly Perfect Absorption in Mid-Infrared. Applied Sciences, 9(16), 3358.

GRAPHENE-TUNABLE MID-INFRARED METAMATERIALS BASED ON TITANIUM NITRIDE NANORODS

Year 2020, , 1269 - 1277, 25.12.2020
https://doi.org/10.21923/jesd.816906

Abstract

Graphene-tunable, particle-based and absorber metamaterials are presented which utilize titanium nitride as the plasmonic material. The design of the particle-based nanoantenna array is shown via geometrical parameter sweep simulations. Additionally, the origin of the resonance mode is revealed by decomposing the spectrum into the radiating contributions of multipoles and near-field-enhancement distribution maps. Moreover, the tunability of the designed metamaterial is shown by changing the chemical potential of a monolayer of graphene which is coated on top of the device. To utilize the designed device as an absorber metamaterial, a mirror layer is introduced for the elimination of the transmission through the device. With the aim of obtaining perfect absorption, the thickness values of the functional layers are optimized via parameter sweep simulations. Finally, the tunability of the absorber metamaterial is shown by utilizing a graphene monolayer on top of the nanoantennas and the tuning performance of both architectures are compared. The engineering of graphene-tunable metal-free metamaterials provides a novel strategy for the development of low-cost integrated photonic devices and plasmonic devices which are resistant to high temperatures.

Supporting Institution

Scientific Research Projects Coordination Center of Hatay Mustafa Kemal University

Project Number

19.M.016

References

  • Andryieuski, A., Lavrinenko, A. V., 2013. Graphene Metamaterials Based Tunable Terahertz Absorber: Effective Surface Conductivity Approach. Optics Express, 21(7), 9144.
  • Aslan, E., 2020. Conformal Talbot-Effect-Focusing Performance of Nested Gallium-Doped Zinc Oxide Nanorings at Communication Wavelength. Photonics and Nanostructures - Fundamentals and Applications, 42, 100839.
  • Aslan, E., Aslan, E., Wang, R., Hong, M. K., Erramilli, S., Turkmen, M., Saracoglu, O. G., Dal Negro, L., 2016. Multispectral Cesaro-Type Fractal Plasmonic Nanoantennas. ACS Photonics, 3(11), 2102–2111.
  • Aslan, E., Aslan, E., Saracoglu, O. G., Turkmen, M., 2019. An Effective Triple-Band Enhanced-Infrared-Absorption Detection by Honeycomb-Shaped Metamaterial-Plasmonic Absorber. Sensors and Actuators A: Physical, 288, 149–155.
  • Bagheri, S., Zgrabik, C. M., Gissibl, T., Tittl, A., Sterl, F., Walter, R., De Zuani, S., Berrier, A., Stauden, T., Richter, G., Hu, E. L., Giessen, H., 2015. Large-Area Fabrication of TiN Nanoantenna Arrays for Refractory Plasmonics in the Mid-Infrared by Femtosecond Direct Laser Writing and Interference Lithography [Invited]. Optical Materials Express, 5(11), 2625–2633.
  • Bang, S., Kim, J., Yoon, G., Tanaka, T., Rho, J., 2018. Recent Advances in Tunable and Reconfigurable Metamaterials. Micromachines, 9(11), 560.
  • Cao, J., Sun, T., Grattan, K. T. V., 2014. Gold Nanorod-Based Localized Surface Plasmon Resonance Biosensors: A Review. Sensors and Actuators B: Chemical, 195, 332–351.
  • Cen, C., Lin, H., Huang, J., Liang, C., Chen, X., Tang, Y., Yi, Z., Ye, X., Liu, J., Yi, Y., Xiao, S., 2018. A Tunable Plasmonic Refractive Index Sensor with Nanoring-Strip Graphene Arrays. Sensors, 18(12), 4489.
  • Chen, J., Wang, Y., Jia, B., Geng, T., Li, X., Feng, L., Qian, W., Liang, B., Zhang, X., Gu, M., Zhuang, S., 2011. Observation of the Inverse Doppler Effect in Negative-Index Materials at Optical Frequencies. Nature Photonics, 5, 239–242.
  • Dietrich, C. P., Fiore, A., Thompson, M. G., Kamp, M., Höfling, S., 2016. GaAs Integrated Quantum Photonics: Towards Compact and Multi-Functional Quantum Photonic Integrated Circuits. Laser and Photonics Reviews, 10(6), 870–894.
  • Dong, Z. G., Zhu, J., Yin, X., Li, J., Lu, C., Zhang, X.,2013. All-Optical Hall Effect by the Dynamic Toroidal Moment in A Cavity-Based Metamaterial. Physical Review B - Condensed Matter and Materials Physics, 87(24), 245429.
  • Fang, J., Huang, J., Gou, Y., Shang, Y., 2020. Research on Broadband Tunable Metamaterial Absorber Based on PIN Diode. Optik, 200, 163171.
  • Gui, L., Bagheri, S., Strohfeldt, N., Hentschel, M., Zgrabik, C. M., Metzger, B., Linnenbank, H., Hu, E. L., Giessen, H., 2016. Nonlinear Refractory Plasmonics with Titanium Nitride Nanoantennas. Nano Letters, 16(9), 5708–5713.
  • Hajian, H., Ghobadi, A., Butun, B., Ozbay, E., 2019. Active Metamaterial Nearly Perfect Light Absorbers: A Review [Invited]. Journal of the Optical Society of America B, 36(8), F131–F143.
  • Hossain, M. M., Jia, B., Gu, M., 2015. A Metamaterial Emitter for Highly Efficient Radiative Cooling. Advanced Optical Materials, 3(8), 1047–1051.
  • Huang, X., He, W., Yang, F., Ran, J., Yang, Q., Xie, S., 2019. Thermally Tunable Metamaterial Absorber Based on Strontium Titanate in the Terahertz Regime. Optical Materials Express, 9(3), 1377.
  • Huang, Y.-W., Chen, W. T., Wu, P. C., Fedotov, V., Savinov, V., Ho, Y. Z., Chau, Y.-F., Zheludev, N. I., Tsai, D. P., 2012. Design of Plasmonic Toroidal Metamaterials at Optical Frequencies. Optics Express, 20(2), 1760–1768.
  • Isic, G., Sinatkas, G., Zografopoulos, D. C., Vasic, B., Ferraro, A., Beccherelli, R., Kriezis, E. E., Belic, M., 2019. Electrically Tunable Metal-Semiconductor-Metal Terahertz Metasurface Modulators. IEEE Journal of Selected Topics in Quantum Electronics, 25(3), 8500108. Jiang, N., Zhuo, X., Wang, J., 2018. Active Plasmonics: Principles, Structures, and Applications. Chemical Reviews, 118(6), 3054–3099.
  • Jin, X., Wang, F., Huang, S., Xie, Z., Li, L., Han, X., Chen, H., Zhou, H., 2019. Coherent Perfect Absorber with Independently Tunable Frequency Based on Multilayer Graphene. Optics Communications, 446, 44–50.
  • Kim, J., Son, H., Cho, D. J., Geng, B., Regan, W., Shi, S., Kim, K., Zettl, A., Shen, Y.R., Wang, F., 2012. Electrical Control of Optical Plasmon Resonance with Graphene. Nano Letters, 12(11), 5598–5602.
  • Li, W., Guler, U., Kinsey, N., Naik, G. V., Boltasseva, A., Guan, J., Shalaev, V. M.,Kildishev, A. V., 2014. Refractory Plasmonics with Titanium Nitride: Broadband Metamaterial Absorber. Advanced Materials, 26(47), 7959–7965.
  • Liu, C., Cai, J., Li, X., Zhang, W., Zhang, D., 2019. Flexible and Tunable Electromagnetic Meta-Atom Based on Silver Nanowire Networks. Materials and Design, 181, 107982.
  • Low, T., Avouris, P., 2014. Graphene Plasmonics for Terahertz to Mid-Infrared Applications. ACS Nano, 8(2), 1086–1101.
  • Min, L., Wang, W., Huang, L., Ling, Y., Liu, T., Liu, J., Luo, C., Zeng, Q., 2019. Direct-Tuning Methods for Semiconductor Metamaterials. Scientific Reports, 9, 17622.
  • Monticone, F., Alù, A., 2014. The Quest for Optical Magnetism: From Split-Ring Resonators to Plasmonic Nanoparticles and Nanoclusters. Journal of Materials Chemistry C, 2, 9059–9072.
  • Naik, G. V., Kim, J., Boltasseva, A., 2011. Oxides and Nitrides as Alternative Plasmonic Materials in the Optical Range [Invited]. Optical Materials Express, 1(6), 1090–1099.
  • Naik, G. V., Shalaev, V. M., Boltasseva, A., 2013. Alternative Plasmonic Materials: Beyond Gold and Silver. Advanced Materials, 25(24), 3264–3294.
  • Nan, H., Chen, Z., Jiang, J., Li, J., Zhao, W., Ni, Z., Gu, X., Xiao, S., 2018. The Effect of Graphene on Surface Plasmon Resonance of Metal Nanoparticles. Physical Chemistry Chemical Physics, 20(38), 25078–25084.
  • Palik, E. D., 1997. Handbook of Optical Constants of Solids. Handbook of Optical Constants of Solids (Vol. I–III), College Park, Maryland, Academic Press.
  • Pendry, J. B., 2000. Negative Refraction Makes a Perfect Lens. Physical Review Letters, 85(18), 3966–3969.
  • Petryayeva, E., Krull, U. J., 2011. Localized Surface Plasmon Resonance: Nanostructures, Bioassays and Biosensing-A Review. Analytica Chimica Acta, 706(1), 8–24.
  • Ren, Z., Chang, Y., Ma, Y., Shih, K., Dong, B., Lee, C., 2019. Leveraging of MEMS Technologies for Optical Metamaterials Applications. Advanced Optical Materials, 1900653.
  • RoyChoudhury, S., Rawat, V., Jalal, A. H., Kale, S. N., Bhansali, S., 2016. Recent Advances in Metamaterial Split-Ring-Resonator Circuits as Biosensors and Therapeutic Agents. Biosensors and Bioelectronics, 86, 595–608. Salemizadeh, M., Mahani, F. F., Mokhtari, A., 2019. Tunable Mid-Infrared Graphene-Titanium Nitride Plasmonic Absorber for Chemical Sensing Applications. Journal of the Optical Society of America B, 36(10), 2863–2870.
  • Schurig, D., Mock, J. J., Justice, B. J., Cummer, S. A., Pendry, J. B., Starr, A. F., Smith, D. R., 2006. Metamaterial Electromagnetic Cloak at Microwave Frequencies. Science, 314(5801), 977–980.
  • Shelby, R. A., Smith, D. R., Schultz, S., 2001. Experimental Verification of a Negative Index of Refraction. Science, 292(5514), 77–79.
  • Shen, N.-H., Kafesaki, M., Koschny, T., Zhang, L., Economou, E. N., Soukoulis, C. M., 2009. Broadband Blueshift Tunable Metamaterials and Dual-Band Switches. Physical Review B - Condensed Matter and Materials Physics, 79(16), 161102.
  • Smith, D. R., Padilla, W. J., Vier, D. C., Nemat-Nasser, S. C., Schultz, S., 2000. Composite Medium with Simultaneously Negative Permeability and Permittivity. Physical Review Letters, 84(18), 4184–4187.
  • Urbas, A. M. et al., 2016. Roadmap on Optical Metamaterials. Journal of Optics, 18(9), 093005.
  • Wang, R., Ren, X.-G., Yan, Z., Jiang, L. J., Sha, W. E. I., Shan, G.-C., 2019. Graphene Based Functional Devices: A Short Review. Frontiers of Physics, 14(1), 13603.
  • Wenclawiak, M., Kainz, M. A., Unterrainer, K., Darmo, J., 2019. Dielectric Control of Localized Plasmons in Terahertz Metamaterials. Photonics and Nanostructures - Fundamentals and Applications, 37, 100734.
  • Xiao, D., Liu, Q., Lei, L., Sun, Y., Ouyang, Z., Tao, K., 2019. Coupled Resonance Enhanced Modulation for a Graphene-Loaded Metamaterial Absorber. Nanoscale Research Letters, 14, 32.
  • Xie, Y., Fan, X., Wilson, J. D., Simons, R. N., Chen, Y., Xiao, J. Q., 2014. A Universal Electromagnetic Energy Conversion Adapter Based on a Metamaterial Absorber. Scientific Reports, 4(1), 6301.
  • Ye, L., Zeng, F., Zhang, Y., Liu, Q. H., 2019. Composite Graphene-Metal Microstructures for Enhanced Multiband Absorption Covering the Entire Terahertz Range. Carbon, 148, 317–325.
  • Zhang, J., Wei, X., Rukhlenko, I. D., Chen, H.-T., Zhu, W., 2020. Electrically Tunable Metasurface with Independent Frequency and Amplitude Modulations. ACS Photonics, 7(1), 265–271.
  • Zhang, Y., Li, T., Chen, Q., Zhang, H., O’Hara, J. F., Abele, E., Taylor, J., Chen, H.T., Azad, A. K., 2016. Independently Tunable Dual-Band Perfect Absorber Based on Graphene at Mid-Infrared Frequencies. Scientific Reports, 5, 18463.
  • Zhao, X., Fan, K., Zhang, J., Seren, H. R., Metcalfe, G. D., Wraback, M., Averitt, R.D., Zhang, X., 2015. Optically Tunable Metamaterial Perfect Absorber on Highly Flexible Substrate. Sensors and Actuators, A: Physical, 231, 74–80.
  • Zhong, Y., Malagari, S. D., Hamilton, T., Wasserman, D., 2015. Review of Mid-Infrared Plasmonic Materials. Journal of Nanophotonics, 9(1), 093791.
  • Zou, Y., Cao, J., Gong, X., Qian, R., An, Z., 2019. Ultrathin and Electrically Tunable Metamaterial with Nearly Perfect Absorption in Mid-Infrared. Applied Sciences, 9(16), 3358.
There are 48 citations in total.

Details

Primary Language English
Subjects Electrical Engineering
Journal Section Research Articles
Authors

Erdem Aslan 0000-0001-6829-9000

Ekin Aslan 0000-0003-0933-7796

Project Number 19.M.016
Publication Date December 25, 2020
Submission Date October 27, 2020
Acceptance Date December 8, 2020
Published in Issue Year 2020

Cite

APA Aslan, E., & Aslan, E. (2020). GRAPHENE-TUNABLE MID-INFRARED METAMATERIALS BASED ON TITANIUM NITRIDE NANORODS. Mühendislik Bilimleri Ve Tasarım Dergisi, 8(4), 1269-1277. https://doi.org/10.21923/jesd.816906