Research Article
BibTex RIS Cite

AN INVESTIGATION ON EDGE DETECTION OF STRUCTURES AND DEPTH ESTIMATION OF ISPARTA ANGLE REGION (SOUTHWEST TURKEY) USING AEROMAGNETIC DATA

Year 2022, , 142 - 151, 23.03.2022
https://doi.org/10.21923/jesd.994057

Abstract

This paper aims to delineate the subsurface structures and their depths located in the Isparta Angle region (SW Turkey) through the aeromagnetic data. The dataset has been processed via the well-known mathematical tools such as spectral analysis and derivative methods. First, to separate these anomalies from each other, the spectral analysis has been completed and high anomaly regions have been determined around Isparta city. This could be attributed to the fact that these values might be stem from magnetic bodies (like volcanic cones, caldera) located in the Golcuk volcanic region. In addition, the average depths of deep and shallow causative bodies have been calculated to be 6.72 km and 0.31 km, respectively. Secondly, to delineate the exact location and the depth to top of the sources, analytic signal transformation and tilt method have been applied to the residual anomalies. The maps show six regions which have the high magnetization values and these anomalies have been investigated in detail to delineate the upper depths of subsurface structures. Especially, the study showed that Golcuk volcanic occurrences, which are one of the crucial structures in the region, have a deeper root (around 3.47 km) and larger lying magnetic bodies underneath the surface.

References

  • Ansari, A.H., Alamdar, K., 2009. Reduction to the pole of magnetic anomalies using analytic signal. World Applied Sciences Journal, 7, 405-409. https://pdfs.semanticscholar.org/0c68/ba1ed775ac6c2007504e41f5db3e68f3b5ed.pdf.
  • Ates, A., Kearey, P., Tufan, S., 1999. New gravity and magnetic maps of Turkey (Research Note). Geophysical Journal International, 136, 499-502.
  • Baranov, V., 1957. A new method for interpretation of aeromagnetic maps: Pseudo-gravimetric anomalies. Geophysics, 22, 359-383.
  • Barka, A., Reilinger, R., Saroglu, F., Sengor, A.M.C., 1995. The Isparta angle: its importance in the neotectonics of the eastern Mediterranean region. Piskin, O., Ergun, M., Savascin, M.Y., Tarcan, G., (ed.). IESCA-1995 Proceedings 3-17.
  • Beyhan, G., Keskinsezer, A., 2016. Investigation of the gravity data from Fethiye-Burdur Fault Zone using the Euler deconvolution technique. Geomechanics and Geophysics for Geo-Energy and Geo-Resources, 2, 195-201.
  • Cengiz, O., Sener, E., Yagmurlu, F., 2006. A satellite image approach to the study of lineaments, circular structures and regional geology in the Golcuk Crater district and its environs (Isparta, SW Turkey). Journal of Asian Earth Sciences, 27, 155-163.
  • Cordell, L. Grauch, V.J.S., 1985. Mapping basement magnetization zones from aeromagnetic data in the San Juan Basin, New Mexico. In: Hinze WJ (Ed.), The Utility of Regional Gravity and Magnetic Anomaly Maps. Society of Exploration Geophysicists, 181-197. http://dx.doi.org/10.1190/1.0931830346.ch16
  • Dolmaz, M.N., Hisarlı, Z.M., Orbay, N., 2003. Interpretation of Bouguer gravity data of Burdur Basin. Istanbul Journal of Earth Sciences Journal, 16, 23-32.
  • Dolmaz, M.N., 2007. An aspect of the subsurface structure of the Burdur-Isparta area, SW Anatolia, based on gravity and aeromagnetic data, and some tectonic implications. Earth Planets Space, 59, 5-12.
  • Dolmaz, M.N., Oksum, E., Erbek, E., Tutunsatar, H.E., Elitok, O., 2018. The nature and origin of magnetic anomalies over the Gölcük caldera, Isparta, SW Turkey. Geofizicheskiy Zhurnal-Geophysical Journal, 40, 145-156.
  • Elitok, O., Ozgur, N., Druppel, K., Dilek, Y., Platevoet, B., Guillou, H., Poisson, A., Scaillet, S., Satir, M., Siebel, W., Bardintzeff, J.M., Deniel, C., Yilmaz, K., 2010. Origin and geodynamic evolution of late Cenozoic potassium-rich volcanism in the Isparta area, southwestern Turkey. International Geology Review, 52, 454-504.
  • Glover, C. and Robertson, A., 1998. Neotectonic intersection of the Aegean and Cyprus tectonic arcs: extensional and strike-slip faulting in the Isparta Angle, SW Turkey. Tectonophysics, 298, 103-132.
  • Miller, H.G., Singh, V., 1994. Potential field tilt-a new concept for location of potential field sources. Journal of Applied Geophysics, 32, 213-217.
  • Monod, O., 1977. Recherches Geologiques dans le Taurus Occidental au Sud de Beysehir (Turquie). Ph.D. thesis, Universite ́de Paris-Sud, Orsay, France, 442, (unpublished).
  • Nabighian, M.N., 1972. The analytic signal of two-dimensional magnetic bodies with polygonal cross-section: its properties and use for automated anomaly interpretation. Geophysics, 37, 507-517.
  • Nabighian, M.N., 1984. Toward a three-dimensional automatic interpretation of potential field data via generalized Hilbert transforms: Fundamental relations. Geophysics, 49, 780-786.
  • Oksum. E., Dolmaz, M.N., Pham, L.T., 2019. Inverting gravity anomalies over the Burdur sedimentary basin, SW Turkey. Acta Geodaetica et Geophysica, 54, 445-460. https://doi.org/10.1007/s40328-019-00273-5.
  • Penck, W., 1918. Die tektonische Grundzu ̈ge Westkleinasiens. Eiszeitalter- Stuttgart.
  • Poisson, A., Yagmurlu, F., Bozcu, M., Senturk, M., 2003. New insights on the tectonic setting and evolution around the apex of the Isparta Angle (SW Turkey). Geological Journal, 38, 257-282.
  • Robertson, A.H.F., Dixon, J.E., Brown, S., Collins, A., Morris, A., Pickett, E., Sharp, I., Ustaomer, T. 1996. Alternative tectonic models for the Late Palaeozoic-Early Tertiary development of Tethys in the Eastern Mediterranean region, Palaeomagnetism and Tectonics of the Mediterranean Region, edited by Morris, A., Tarling D.H., Geological Society of London, Special Publication, 109, 239-263. https://doi.org/10.1144/GSL.SP.1996.105.01.22.
  • Roest, W.R., Verhoef. J., Pilkington, M., 1992. Magnetic interpretation using the 3-D analytic signal. Geophysics, 5, 116-125.
  • Salem, A., Williams, S., Fairhead, J.D., Ravat, D., Smith, R., 2007. Tilt-depth method: A simple depth estimation method using first-order magnetic derivatives. Leading Edge, 26, 12.
  • Spector, A., Grant, F.S., 1970. Statistical models for interpreting aeromagnetic data. Geophysics, 35, 293-302
  • Verduzco, B., Fairhead, J.D., Green, C.M., McKenzie, C., 2004. New insights into magnetic derivatives for structural mapping. The Leading Edge, 23, 116-119.
  • Wang, Y.G., Zhang, J., Ge, K.P., Chen, X., Nie, F.J., 2016. Improved tilt-depth method for fast estimation of top and bottom depths of magnetic bodies. Applied Geophysics, 13, 249-256.
  • Yagmurlu, F., Savascin, Y., Ergun, M. 1997. Relation of alkaline volcanism and active tectonism within the evolution of the Isparta Angle, SW Turkey. Geological Journal, 15, 717-728.

ISPARTA AÇI BÖLGESİ (GÜNEYBATI TÜRKİYE) YAPILARIN SINIR TESPİTİ VE DERİNLİK TAHMİNİ ÜZERİNE HAVA MANYETİK VERİLERLE BİR ARAŞTIRMA

Year 2022, , 142 - 151, 23.03.2022
https://doi.org/10.21923/jesd.994057

Abstract

Bu makale, Isparta Açı bölgesinde (GB Türkiye) yer alan yeraltı yapılarını ve derinliklerini aeromanyetik veriler aracılığıyla tanımlamayı amaçlamaktadır. Veri seti, spektral analiz ve türev yöntemleri gibi iyi bilinen matematiksel araçlar aracılığıyla işlenmiştir. Öncelikle bu anomalileri birbirinden ayırmak için spektral analiz uygulanmış ve Isparta ili çevresinde yüksek anomalili bölgeler belirlenmiştir. Bu durum, bu değerlerin Gölcük volkanik bölgesinde yer alan manyetik cisimlerden (volkanik koniler, kaldera gibi) kaynaklanıyor olabileceğine bağlanabilir. Ayrıca derin ve sığ kaynaklı cisimlerin ortalama derinlikleri sırasıyla 6,72 km ve 0,31 km olarak hesaplanmıştır. İkinci olarak, kaynakların tam yerini ve en üst noktaya kadar olan derinliğini belirlemek için rezidüel anomalilere analitik sinyal dönüşümü ve tilt yöntemi uygulanmıştır. Haritalar, yüksek manyetizasyon değerlerine sahip altı bölgeyi göstermiştir ve bu anomaliler, yeraltı yapılarının üst derinliklerini betimlemek için ayrıntılı olarak incelenmiştir. Özellikle çalışma, bölgedeki önemli yapılardan biri olan Gölcük volkanik oluşumlarının daha derin bir köke (yaklaşık 3.47 km) ve yüzeyin altında daha büyük manyetik kütlelere sahip olduğunu göstermiştir.

References

  • Ansari, A.H., Alamdar, K., 2009. Reduction to the pole of magnetic anomalies using analytic signal. World Applied Sciences Journal, 7, 405-409. https://pdfs.semanticscholar.org/0c68/ba1ed775ac6c2007504e41f5db3e68f3b5ed.pdf.
  • Ates, A., Kearey, P., Tufan, S., 1999. New gravity and magnetic maps of Turkey (Research Note). Geophysical Journal International, 136, 499-502.
  • Baranov, V., 1957. A new method for interpretation of aeromagnetic maps: Pseudo-gravimetric anomalies. Geophysics, 22, 359-383.
  • Barka, A., Reilinger, R., Saroglu, F., Sengor, A.M.C., 1995. The Isparta angle: its importance in the neotectonics of the eastern Mediterranean region. Piskin, O., Ergun, M., Savascin, M.Y., Tarcan, G., (ed.). IESCA-1995 Proceedings 3-17.
  • Beyhan, G., Keskinsezer, A., 2016. Investigation of the gravity data from Fethiye-Burdur Fault Zone using the Euler deconvolution technique. Geomechanics and Geophysics for Geo-Energy and Geo-Resources, 2, 195-201.
  • Cengiz, O., Sener, E., Yagmurlu, F., 2006. A satellite image approach to the study of lineaments, circular structures and regional geology in the Golcuk Crater district and its environs (Isparta, SW Turkey). Journal of Asian Earth Sciences, 27, 155-163.
  • Cordell, L. Grauch, V.J.S., 1985. Mapping basement magnetization zones from aeromagnetic data in the San Juan Basin, New Mexico. In: Hinze WJ (Ed.), The Utility of Regional Gravity and Magnetic Anomaly Maps. Society of Exploration Geophysicists, 181-197. http://dx.doi.org/10.1190/1.0931830346.ch16
  • Dolmaz, M.N., Hisarlı, Z.M., Orbay, N., 2003. Interpretation of Bouguer gravity data of Burdur Basin. Istanbul Journal of Earth Sciences Journal, 16, 23-32.
  • Dolmaz, M.N., 2007. An aspect of the subsurface structure of the Burdur-Isparta area, SW Anatolia, based on gravity and aeromagnetic data, and some tectonic implications. Earth Planets Space, 59, 5-12.
  • Dolmaz, M.N., Oksum, E., Erbek, E., Tutunsatar, H.E., Elitok, O., 2018. The nature and origin of magnetic anomalies over the Gölcük caldera, Isparta, SW Turkey. Geofizicheskiy Zhurnal-Geophysical Journal, 40, 145-156.
  • Elitok, O., Ozgur, N., Druppel, K., Dilek, Y., Platevoet, B., Guillou, H., Poisson, A., Scaillet, S., Satir, M., Siebel, W., Bardintzeff, J.M., Deniel, C., Yilmaz, K., 2010. Origin and geodynamic evolution of late Cenozoic potassium-rich volcanism in the Isparta area, southwestern Turkey. International Geology Review, 52, 454-504.
  • Glover, C. and Robertson, A., 1998. Neotectonic intersection of the Aegean and Cyprus tectonic arcs: extensional and strike-slip faulting in the Isparta Angle, SW Turkey. Tectonophysics, 298, 103-132.
  • Miller, H.G., Singh, V., 1994. Potential field tilt-a new concept for location of potential field sources. Journal of Applied Geophysics, 32, 213-217.
  • Monod, O., 1977. Recherches Geologiques dans le Taurus Occidental au Sud de Beysehir (Turquie). Ph.D. thesis, Universite ́de Paris-Sud, Orsay, France, 442, (unpublished).
  • Nabighian, M.N., 1972. The analytic signal of two-dimensional magnetic bodies with polygonal cross-section: its properties and use for automated anomaly interpretation. Geophysics, 37, 507-517.
  • Nabighian, M.N., 1984. Toward a three-dimensional automatic interpretation of potential field data via generalized Hilbert transforms: Fundamental relations. Geophysics, 49, 780-786.
  • Oksum. E., Dolmaz, M.N., Pham, L.T., 2019. Inverting gravity anomalies over the Burdur sedimentary basin, SW Turkey. Acta Geodaetica et Geophysica, 54, 445-460. https://doi.org/10.1007/s40328-019-00273-5.
  • Penck, W., 1918. Die tektonische Grundzu ̈ge Westkleinasiens. Eiszeitalter- Stuttgart.
  • Poisson, A., Yagmurlu, F., Bozcu, M., Senturk, M., 2003. New insights on the tectonic setting and evolution around the apex of the Isparta Angle (SW Turkey). Geological Journal, 38, 257-282.
  • Robertson, A.H.F., Dixon, J.E., Brown, S., Collins, A., Morris, A., Pickett, E., Sharp, I., Ustaomer, T. 1996. Alternative tectonic models for the Late Palaeozoic-Early Tertiary development of Tethys in the Eastern Mediterranean region, Palaeomagnetism and Tectonics of the Mediterranean Region, edited by Morris, A., Tarling D.H., Geological Society of London, Special Publication, 109, 239-263. https://doi.org/10.1144/GSL.SP.1996.105.01.22.
  • Roest, W.R., Verhoef. J., Pilkington, M., 1992. Magnetic interpretation using the 3-D analytic signal. Geophysics, 5, 116-125.
  • Salem, A., Williams, S., Fairhead, J.D., Ravat, D., Smith, R., 2007. Tilt-depth method: A simple depth estimation method using first-order magnetic derivatives. Leading Edge, 26, 12.
  • Spector, A., Grant, F.S., 1970. Statistical models for interpreting aeromagnetic data. Geophysics, 35, 293-302
  • Verduzco, B., Fairhead, J.D., Green, C.M., McKenzie, C., 2004. New insights into magnetic derivatives for structural mapping. The Leading Edge, 23, 116-119.
  • Wang, Y.G., Zhang, J., Ge, K.P., Chen, X., Nie, F.J., 2016. Improved tilt-depth method for fast estimation of top and bottom depths of magnetic bodies. Applied Geophysics, 13, 249-256.
  • Yagmurlu, F., Savascin, Y., Ergun, M. 1997. Relation of alkaline volcanism and active tectonism within the evolution of the Isparta Angle, SW Turkey. Geological Journal, 15, 717-728.
There are 26 citations in total.

Details

Primary Language English
Subjects Geological Sciences and Engineering (Other)
Journal Section Research Articles
Authors

Ezgi Erbek Kıran 0000-0003-4627-8932

Publication Date March 23, 2022
Submission Date September 11, 2021
Acceptance Date October 21, 2021
Published in Issue Year 2022

Cite

APA Erbek Kıran, E. (2022). AN INVESTIGATION ON EDGE DETECTION OF STRUCTURES AND DEPTH ESTIMATION OF ISPARTA ANGLE REGION (SOUTHWEST TURKEY) USING AEROMAGNETIC DATA. Mühendislik Bilimleri Ve Tasarım Dergisi, 10(1), 142-151. https://doi.org/10.21923/jesd.994057