Research Article
BibTex RIS Cite

INTELLIGENT USE OF ISO AND AGMA GEAR STANDARDS FOR COST EFFECTIVE SPUR GEAR DESIGN

Year 2017, Volume: 5 Issue: 3, 643 - 655, 25.12.2017
https://doi.org/10.21923/jesd.325429

Abstract

ISO
and AGMA standards provide the most accurate and commonly used spur gear design
approaches but the design results obtained from both are differing from each
other even under the same input parameters. The selected design approach has a
significant influence on the results, therefore, if the design approaches are
not rated for gear designs, the designers are not aware of the loss or gain on
the cost and failure or success of the design
. This paper uses ISO and AGMA gear standards to
carry out
spur gear designs considering the allowable
range of gear speed ratios, transmitted power combinations and the failure
conditions like bending and surface contact fatigue. These wide ranges of considerations
which
cover almost the most design applications in industrial practice allow to rate
the
design results obtained from both standards. The
systematic method available in this study is generic and meets a need to select
an appropriate gear standard by introducing dimensionless, “Geometric Rating
Numbers, (GRi)”. The practical curves and charts help designers to
select cost effective, interference-free spur gear design approach for a
particular gear design.

References

  • ANSI/AGMA 2101-D04 Standards, 2004. Fundamental rating factors and calculation methods for involute spur and helical gear teeth, Virginia, USA.
  • Beckman, K.O., Patel, V.P., 2000. Review of API versus AGMA Gear Standards – Ratings, Data Sheet Completion, and Gear Selection Guidelines. Proceedings of the 29th Turbomachinery Symposium, 191-204.
  • Budynas, R.G., Nisbett, J.K., 2011. Shigley's Mechanical Engineering Design. Ninth Edition. McGraw-Hill.
  • Cahala, G., 1999. ISO 6336 Vs AGMA 2001 Gear Rating Comparison for Industrial Gear Applications. 1999 IEEE-IAS/PCA Cement Industry Technical Conference, 19-22.
  • Cahala, G., Uherek, F.C., 2007. Gear Rating Impact of AGMA 6014 Gear Ratings for Mill and Kiln Service. 2007 IEEE Cement Industry Technical Conference, 207-213.
  • Cavdar, K., Karpat, F., Babalik, F.C., 2005. Computer Aided Analysis of Bending Strength of Involute Spur Gears with Asymmetric Profile. Journal of Mechanical Design, 127, 477-484.
  • Fetvacı, M.C., Imrak, C.E., 2004. Düz Dişli Çarkların Sonlu Elemanlar Metodu ile Modellenmesi. Sigma Journal of Engineering and Natural Sciences, 19 (2), 199-203.
  • Geren, N., Baysal, M.M., 2000. Expert System Development for Spur Gear Design. 9th International Machine Design and Production Conference Proceedings, Ankara, Turkey.
  • Gologlu, C., Zeyveli, M., 2009. A Genetic Approach to Automate Preliminary Design of Gear Drives. Computers & Industrial Engineering, 57, 1043–1051.
  • Gupta, B., Choubey, A., Varde, G.V., 2012. Contact Stress Analysis of Spur Gear. International Journal of Engineering Research & Technology (IJERT), 1, 1-7.
  • Huang, K.J., Su, H.W., 2010. Approaches to Parametric Element Constructions and Dynamic Analyses of Spur/Helical Gears Including Modifications and Undercutting. Finite Elements in Analysis and Design, 46, 1106–1113.
  • ICARUS Reference, 1998. Chapter 4, 3rd Edition, Icarus Corporation, USA.
  • ISO Standards 9085:2002, 2002. Calculation of load capacity of spur and helical gears – Application for industrial gears, Switzerland.
  • ISO Standards 6336 – Part 1, 2006. Calculation of load capacity of spur and helical gears – Basic principles, introduction and general influence factors, Switzerland.
  • ISO Standards 6336 – Part 3, 2006. Calculation of load capacity of spur and helical gears – Calculation of tooth bending strength, London, UK.
  • ISO Standards 6336 – Part 5, 2003. Calculation of load capacity of spur and helical gears – Strength and quality of materials, Switzerland.
  • ISO Standards 6336 – Part 6, 2004. Calculation of load capacity of spur and helical gears – Calculation of service life under variable load, Switzerland.
  • Jebur, A.K., Khan, I.A., Nath, Y., 2011. Numerical and Experimental Dynamic Contact of Rotating Spur Gear. Modern Applied Science, 5 (2), 54-263.
  • Karaveer, V., Mogrekar, A., Joseph, T.P.R., 2013. Modeling and Finite Element Analysis of Spur Gear. International Journal of Current Engineering and Technology, 3 (5), 2104-2107.
  • Kawalec, A., Wiktor, J., Ceglarek, D., 2006. Comparative Analysis of Tooth-Root Strength Using ISO and AGMA Standards in Spur and Helical Gears With FEM-based Verification. Journal of Mechanical Design, 128 (5), 1141-1158.
  • Kawalec, A., Wiktor, J., 2008. Tooth Root Strength of Spur and Helical Gears Manufactured with Gear-Shaper Cutters. Journal of Mechanical Design, 130, 1-5.
  • Li, C., Chiou, H., Hung, C., Chang, Y., Yen, C., 2002. Integration of Finite Element Analysis and Optimum Design on Gear Systems. Finite Elements in Analysis and Design, 38, 179-192.
  • Li, S., 2007. Finite Element Analyses For Contact Strength and Bending Strength of A Pair of Spur Gears With Machining Errors, Assembly Errors and Tooth Modifications. Mechanism and Machine Theory, 42, 88–114.
  • Marković, K., Franulović, M., 2011. Contact Stresses in Gear Teeth Due to Tip Relief Profile Modification. Engineering Review, 31-1, 19-26.
  • Mendi, F., Başkal, T., Boran, K., Boran, F.E., 2010. Optimization of Module, Shaft Diameter and Rolling Bearing for Spur Gear through Genetic Algorithm. Expert Systems with Applications, 37, 8058–8064.
  • Parthiban, A., Raju, P.R., Sreenivasulu, V., Rao, P.D., Kiran, C.U., 2013. Profile Modification for Increasing the Tooth Strength in Spur Gear using CAD & CAE. International Journal of Innovations in Engineering and Technology, 2, 231-241.
  • Pedersen, N.L., Raju, P.R., Sreenivasulu, V., Rao, P.D., Kiran, C.U., 2010. Improving Bending Stress in Spur Gears Using Asymmetric Gears and Shape Optimization. Mechanism and Machine Theory, 45, 1707–1720.
  • Sankar, S., Nataraj, M., 2011. Profile Modification - A Design Approach for Increasing the Tooth Strength in Spur Gear. The International Journal of Advanced Manufacturing Technology, 55, 1-10.
  • Shinde, S.P., Nikam, A.A., Mulla, T.S., 2009. Static Analysis of Spur Gear Using Finite Element Analysis. IOSR Journal of Mechanical and Civil Engineering (IOSR-JMCE), 26-31.
  • Tiwari, S.K., Joshi, U.K., 2012. Stress Analysis of Mating Involute Spur Gear teeth. International Journal of Engineering Research and Technology, 1, 1-12.
  • Ugural, A.C., 2003. Mechanical Design an Integrated Approach, 1st Edition, McGraw Hill.

MALİYET ETKİN DÜZ DİŞLI ÇARK TASARIMI GERÇEKLEŞTİRMEK İÇİN ISO VE AGMA STANDARTLARINDAN UYGUN OLANININ KULLANIMI

Year 2017, Volume: 5 Issue: 3, 643 - 655, 25.12.2017
https://doi.org/10.21923/jesd.325429

Abstract

ISO ve AGMA standartları dişli çark tasarımında en yaygın olarak kullanılan ve doğru sonuçlar veren tasarım yaklaşımlarıdır. Ama aynı çalışma parametreleri altında dahi elde edilen tasarım sonuçları birbirlerinden farklılık göstermektedir. Tasarım için seçilen yaklaşım sonuçlar üzerinde önemli etkiye sahiptir. Bu sebeple, eğer tasarım yaklaşımları birbirlerine göre kıyaslanmaz ise tasarımcılar üzerinde maliyetten kazanç veya kayıp hakkında veya tasarımın başarılı veya başarısız olması ihtimali hakkında farkındalık oluşmayacaktır. Bu çalışma, ISO ve AGMA standartlarını kullanarak düz dişli çark tasarımları gerçekleştirir. Tasarımlarda dişli hız oranları, aktarılan güç değerleri, ve yüzey temas ve eğilme gerilmeleri gibi dişli çarklar yorulma gerilmeleri de dikkate alınmıştır. Bu geniş yelpazede değerlendirilen faktörler sayesinde elde edilen sonuçlar hemen hemen birçok endüstriyel alanda ihtiyaç duyulan uygulamaları kapsayacak niteliktedir. Çalışmada sunulan sistematik metot kendine özgü olup uygun tasarım yaklaşımı seçmeyi sağlar. Bunu "Geometric Rating Number (GRi)" adı verilen boyutsuz sayılar türeterek yapmaktadır. Elde edilen pratik eğriler ve grafikler tasarımcıya maliyet etkin, doğru tasarımı ortaya koyma noktasında yol gösterici niteliktedir.

References

  • ANSI/AGMA 2101-D04 Standards, 2004. Fundamental rating factors and calculation methods for involute spur and helical gear teeth, Virginia, USA.
  • Beckman, K.O., Patel, V.P., 2000. Review of API versus AGMA Gear Standards – Ratings, Data Sheet Completion, and Gear Selection Guidelines. Proceedings of the 29th Turbomachinery Symposium, 191-204.
  • Budynas, R.G., Nisbett, J.K., 2011. Shigley's Mechanical Engineering Design. Ninth Edition. McGraw-Hill.
  • Cahala, G., 1999. ISO 6336 Vs AGMA 2001 Gear Rating Comparison for Industrial Gear Applications. 1999 IEEE-IAS/PCA Cement Industry Technical Conference, 19-22.
  • Cahala, G., Uherek, F.C., 2007. Gear Rating Impact of AGMA 6014 Gear Ratings for Mill and Kiln Service. 2007 IEEE Cement Industry Technical Conference, 207-213.
  • Cavdar, K., Karpat, F., Babalik, F.C., 2005. Computer Aided Analysis of Bending Strength of Involute Spur Gears with Asymmetric Profile. Journal of Mechanical Design, 127, 477-484.
  • Fetvacı, M.C., Imrak, C.E., 2004. Düz Dişli Çarkların Sonlu Elemanlar Metodu ile Modellenmesi. Sigma Journal of Engineering and Natural Sciences, 19 (2), 199-203.
  • Geren, N., Baysal, M.M., 2000. Expert System Development for Spur Gear Design. 9th International Machine Design and Production Conference Proceedings, Ankara, Turkey.
  • Gologlu, C., Zeyveli, M., 2009. A Genetic Approach to Automate Preliminary Design of Gear Drives. Computers & Industrial Engineering, 57, 1043–1051.
  • Gupta, B., Choubey, A., Varde, G.V., 2012. Contact Stress Analysis of Spur Gear. International Journal of Engineering Research & Technology (IJERT), 1, 1-7.
  • Huang, K.J., Su, H.W., 2010. Approaches to Parametric Element Constructions and Dynamic Analyses of Spur/Helical Gears Including Modifications and Undercutting. Finite Elements in Analysis and Design, 46, 1106–1113.
  • ICARUS Reference, 1998. Chapter 4, 3rd Edition, Icarus Corporation, USA.
  • ISO Standards 9085:2002, 2002. Calculation of load capacity of spur and helical gears – Application for industrial gears, Switzerland.
  • ISO Standards 6336 – Part 1, 2006. Calculation of load capacity of spur and helical gears – Basic principles, introduction and general influence factors, Switzerland.
  • ISO Standards 6336 – Part 3, 2006. Calculation of load capacity of spur and helical gears – Calculation of tooth bending strength, London, UK.
  • ISO Standards 6336 – Part 5, 2003. Calculation of load capacity of spur and helical gears – Strength and quality of materials, Switzerland.
  • ISO Standards 6336 – Part 6, 2004. Calculation of load capacity of spur and helical gears – Calculation of service life under variable load, Switzerland.
  • Jebur, A.K., Khan, I.A., Nath, Y., 2011. Numerical and Experimental Dynamic Contact of Rotating Spur Gear. Modern Applied Science, 5 (2), 54-263.
  • Karaveer, V., Mogrekar, A., Joseph, T.P.R., 2013. Modeling and Finite Element Analysis of Spur Gear. International Journal of Current Engineering and Technology, 3 (5), 2104-2107.
  • Kawalec, A., Wiktor, J., Ceglarek, D., 2006. Comparative Analysis of Tooth-Root Strength Using ISO and AGMA Standards in Spur and Helical Gears With FEM-based Verification. Journal of Mechanical Design, 128 (5), 1141-1158.
  • Kawalec, A., Wiktor, J., 2008. Tooth Root Strength of Spur and Helical Gears Manufactured with Gear-Shaper Cutters. Journal of Mechanical Design, 130, 1-5.
  • Li, C., Chiou, H., Hung, C., Chang, Y., Yen, C., 2002. Integration of Finite Element Analysis and Optimum Design on Gear Systems. Finite Elements in Analysis and Design, 38, 179-192.
  • Li, S., 2007. Finite Element Analyses For Contact Strength and Bending Strength of A Pair of Spur Gears With Machining Errors, Assembly Errors and Tooth Modifications. Mechanism and Machine Theory, 42, 88–114.
  • Marković, K., Franulović, M., 2011. Contact Stresses in Gear Teeth Due to Tip Relief Profile Modification. Engineering Review, 31-1, 19-26.
  • Mendi, F., Başkal, T., Boran, K., Boran, F.E., 2010. Optimization of Module, Shaft Diameter and Rolling Bearing for Spur Gear through Genetic Algorithm. Expert Systems with Applications, 37, 8058–8064.
  • Parthiban, A., Raju, P.R., Sreenivasulu, V., Rao, P.D., Kiran, C.U., 2013. Profile Modification for Increasing the Tooth Strength in Spur Gear using CAD & CAE. International Journal of Innovations in Engineering and Technology, 2, 231-241.
  • Pedersen, N.L., Raju, P.R., Sreenivasulu, V., Rao, P.D., Kiran, C.U., 2010. Improving Bending Stress in Spur Gears Using Asymmetric Gears and Shape Optimization. Mechanism and Machine Theory, 45, 1707–1720.
  • Sankar, S., Nataraj, M., 2011. Profile Modification - A Design Approach for Increasing the Tooth Strength in Spur Gear. The International Journal of Advanced Manufacturing Technology, 55, 1-10.
  • Shinde, S.P., Nikam, A.A., Mulla, T.S., 2009. Static Analysis of Spur Gear Using Finite Element Analysis. IOSR Journal of Mechanical and Civil Engineering (IOSR-JMCE), 26-31.
  • Tiwari, S.K., Joshi, U.K., 2012. Stress Analysis of Mating Involute Spur Gear teeth. International Journal of Engineering Research and Technology, 1, 1-12.
  • Ugural, A.C., 2003. Mechanical Design an Integrated Approach, 1st Edition, McGraw Hill.
There are 31 citations in total.

Details

Subjects Engineering
Journal Section Research Articles
Authors

Çağri Uzay 0000-0002-7713-8951

Necdet Geren 0000-0002-9645-0852

Publication Date December 25, 2017
Submission Date July 1, 2017
Acceptance Date November 20, 2017
Published in Issue Year 2017 Volume: 5 Issue: 3

Cite

APA Uzay, Ç., & Geren, N. (2017). MALİYET ETKİN DÜZ DİŞLI ÇARK TASARIMI GERÇEKLEŞTİRMEK İÇİN ISO VE AGMA STANDARTLARINDAN UYGUN OLANININ KULLANIMI. Mühendislik Bilimleri Ve Tasarım Dergisi, 5(3), 643-655. https://doi.org/10.21923/jesd.325429

Cited By

A comprehensive review on design and analysisof spur gears
International Journal on Interactive Design and Manufacturing (IJIDeM)
https://doi.org/10.1007/s12008-022-01148-w