Research Article
BibTex RIS Cite

NANO SILVER PARTICULATE / BACTERIAL CELLULOSE (AG/BS) PRODUCTION BY DIFFERENT METHODS AND DETERMINATION OF ANTIBACTERIAL CHARACTERISTICS

Year 2019, Volume: 7 Issue: 1, 161 - 166, 25.03.2019
https://doi.org/10.21923/jesd.478755

Abstract

Bacterial cellulose (BC), which has a nano composite structure formation, is a highly advantageous material in terms of its high biocompatibility and ecological properties. This study demonstrates that BC produced by vinegar bacteria has an antibacterial effect by absorbing the silver in the nanoscale. Ag/BC nanocomposite agar diffusion method was used to determine antibacteriality and water retention capacity. Antibacteriality test was performed with 4 different bacterial cultures showing pathogenic properties. Ag-BC Nanocomposite showed antibacterial inhibition zone against all pathogenic bacteria, especially showed stronger effect against E. coli bacteria.

References

  • Bao, H., Yu, X., Xu, C., Li, X., Li, Z., Wei, D., & Liu, Y., 2015. New toxicity mechanism of silver nanoparticles: promoting apoptosis and inhibiting proliferation. PLoS One, 10(3), e0122535.
  • Basuny, M.; Ali, I. O.; El-Gawad, A. A.; Bakr, M. F.; Salama, 2015. T. M. A Fast Green Synthesis of AgNanoparticles in Carboxymethyl Cellulose (CMC) through UV Irradiation Technique for Antibacterial Applications. J. Sol-Gel Sci. Technol. 75, 530−540.
  • Clinical Application and Cytotoxicity.Mol. Biol. Rep., 39, 9193− 9201.
  • Daina, S.; Sadocco,P., 2009. Antibacterial Activity of Nanocomposites of Silver and Bacterial or Vegetable Cellulosic Fibers. ActaBiomater. 5, 2279−2289.
  • Ge, L.; Li, Q.; Wang, M.; Ouyang, J.; Li, X.; Xing, M. M., 2014. Nanosilver Particles in Medical Applications: Synthesis, Performance, and Toxicity. Int. J. Nanomed. : 9, 2399−2407.
  • H. S. Barud, C. Barrios, T. Regiani et al., 2008. “Self-supported silver nanoparticles containing bacterial cellulose membranes,” Materials Science and Engineering C, vol. 28, no. 4, pp. 515– 518.
  • Ifuku, S., Tsuji, M., Morimoto, M., Saimoto, H., Yano, H., 2009. Synthesis of silver nanoparticles templated by TEMPO-mediated oxidized bacterial cellulose nanofibers. Biomacromolecules, 10(9), 2714-2717.
  • Iguchi, M., Yamanaka, S., Budhiono, A., 2000. Bacterial cellulose—a masterpiece of nature's arts. Journal of Materials Science, 35(2), 261-270.
  • Keshk, S. M. A. S., 2014. Bacterial cellulose production and its industrial applications. J Bioprocess Biotech, 4(150), 2.
  • Kucińska-Lipka, J., Gubanska, I., &Janik, H., 2015. Bacterial cellulose in the field of wound healing and regenerative medicine of skin: recent trends and future prospectives. Polymer Bulletin, 72(9), 2399-2419.
  • Lansdown, A. B. G. A, 2010. Pharmacological and Toxicological Profileof Silver as an Antimicrobial Agent in Medical Devices, Advances in Pharmacological Sciences. Adv. Pharmacol. Sci. 2010, 1−16.
  • Lee, H. Y., Park, H. K., Lee, Y. M., Kim, K., & Park, S. B., 2007. A practical procedure for producing silver nanocoated fabric and its antibacterial evaluation for biomedical applications. Chemical Communications, (28), 2959-2961.
  • Li, Z.; Wang, L.; Chen, S.; Feng, C.; Chen, S.; Yin, N.; Yang, J.; Wang, H.; Xu, Y., 2015. Facilely Green Synthesis of Silver Nanoparticles into Bacterial Cellulose. Cellulose, 22, 373−383.
  • Maneerung, T., Tokura, S., &Rujiravanit, R., 2008. Impregnation of silver nanoparticles into bacterial cellulose for antimicrobial wound dressing. Carbohydrate polymers, 72(1), 43-51.
  • Pal, S., Nisi, R., Stoppa, M., &Licciulli, A., 2017. Silver-Functionalized Bacterial Cellulose as Antibacterial Membrane for Wound-Healing Applications. ACS Omega, 2(7), 3632-3639.
  • Paladini, F.; Pollini, M.; Sannino, A.; Ambrosio, 2015. L. Metal-Based Antibacterial Substrates for Biomedical Applications. Biomacromolecules , 16, 1873−1885.
  • Pinto, R. J. B.; Marques, P. A. A. P.; Neto, C. P.; Trindade, T. 2009. Antibacterial activity of nanocomposites of silver and bacterial or vegetable cellulosic fibers. Acta Biomaterialia, , 5, 2279-2289
  • Rieger, K. A., Cho, H. J., Yeung, H. F., Fan, W., &Schiffman, J. D., 2016. Antimicrobial activity of silver ions released from zeolites immobilized on cellulose nanofiber mats. ACS applied materials & interfaces, 8(5), 3032-3040.
  • Schramm, M., Hestrin, S., 1954, Factors affecting production of cellulose at the air/liquid interface of a culture of Acetobacter xylinum. Microbiology, 11(1), 123-129.
  • Shi, Z., Zhang, Y., Phillips, G. O., & Yang, G., 2014. Utilization of bacterial cellulose in food. Food Hydrocolloids, 35, 539-545.
  • Sohoni, S., Sridhar, R., Mandal, G.,1991. The effect of grinding aids on the fine grinding of limestone, quartz and Portland cement clinker. Powder technology, 67(3), 277-286.
  • Valla, S., Kjosbakken, J., 1982. Cellulose-negative mutants of Acetobacter xylinum. Microbiology, 128(7), 1401-1408.
  • Weissermel, K., Arpe, H. J., 2008. Industrial organic chemistry. John Wiley & Sons.
  • Wu, J., Zheng, Y., Song, W., Luan, J., Wen, X., Wu, Z., & Guo, S. (2014). In situ synthesis of silver-nanoparticles/bacterial cellulose composites for slow-released antimicrobial wound dressing. Carbohydrate polymers, 102, 762-771.
  • Wu, Z. Y., Liang, H. W., Chen, L. F., Hu, B. C., & Yu, S. H., 2015. Bacterial cellulose: A robust platform for design of three dimensional carbon-based functional nanomaterials. Accounts of chemical research, 49(1), 96-105.
  • Yakuphanoglu, F., Okur, S., 2010. Analysis of electronic parameters and interface states of boron dispersed triethanolamine/p-Si structure by AFM, I–V, C–V–f and G/ω–V–f techniques. Microelectronic Engineering, 87(1), 30-34.
  • Yang, G.; Xie, J.; Hong, F.; Cao, Z.; Yang, X., 2012. Antimicrobial Activity of Silver Nanoparticle Impregnated Bacterial Cellulose Membrane: Effect of Fermentation Carbon Sources of BacterialCellulose. Carbohydr. Polym. 87, 839−845.
  • You, C.; Han, C.; Wang, X.; Zheng, Y.; Li, Q.; Hu, X.; Sun, H., 2012. The Progress of Silver Nanoparticles in the Antibacterial Mechanism.
  • Zang, S., Zhang, R., Chen, H., Lu, Y., Zhou, J., Chang, X., & Yang, G., 2015. Investigation on artificial blood vessels prepared from bacterial cellulose. Materials Science and Engineering: C, 46, 111-117.

FARKLI METODLARLA ELDE EDİLEN NANO GÜMÜŞ PARÇACIKLI/BAKTERİYEL SELÜLOZ (AG/BS) NANOKOMPOZITIN ANTİBAKTERİYEL ÖZELLİĞİNİN BELİRLENMESİ

Year 2019, Volume: 7 Issue: 1, 161 - 166, 25.03.2019
https://doi.org/10.21923/jesd.478755

Abstract

Nano kompozit yapısı ağsı bir oluşum gösteren bakteriyel selüloz (BS), son zamanlarda biyomedikal alanlarda kullanımı artmış hafif, toksik olmayan su tutma kapasitesi oldukça yüksek, biyouyumlu ve ekolojik olması yönüyle oldukça avantajlı bir materyaldir. Bu çalışma, sirke bakterileri tarafından üretilen BS nin gümüşü nanoboyutta absorbe ederek antibakteriyel bir etki göstermesine örnek teşkil etmektedir. İki farklı metodla oluşturulan gümüş/bakteriyel selüloz Ag/BS nanokompozit agar difüzyon yöntemi ile antibakteriyellik testleri ve su tutma kapasiteleri belirlenmiştir. Antibakteriyellik testi patojen özellik gösteren 4 farklı bakteri kültürü ile yapılmıştır. Ag/BS nanokompozit tüm patojen bakterilere karşı antibakteriyel inhibisyon zon oluşumu göstermiş, özellikle E. coli bakterisine karşı daha kuvvetli etki göstermiştir.

References

  • Bao, H., Yu, X., Xu, C., Li, X., Li, Z., Wei, D., & Liu, Y., 2015. New toxicity mechanism of silver nanoparticles: promoting apoptosis and inhibiting proliferation. PLoS One, 10(3), e0122535.
  • Basuny, M.; Ali, I. O.; El-Gawad, A. A.; Bakr, M. F.; Salama, 2015. T. M. A Fast Green Synthesis of AgNanoparticles in Carboxymethyl Cellulose (CMC) through UV Irradiation Technique for Antibacterial Applications. J. Sol-Gel Sci. Technol. 75, 530−540.
  • Clinical Application and Cytotoxicity.Mol. Biol. Rep., 39, 9193− 9201.
  • Daina, S.; Sadocco,P., 2009. Antibacterial Activity of Nanocomposites of Silver and Bacterial or Vegetable Cellulosic Fibers. ActaBiomater. 5, 2279−2289.
  • Ge, L.; Li, Q.; Wang, M.; Ouyang, J.; Li, X.; Xing, M. M., 2014. Nanosilver Particles in Medical Applications: Synthesis, Performance, and Toxicity. Int. J. Nanomed. : 9, 2399−2407.
  • H. S. Barud, C. Barrios, T. Regiani et al., 2008. “Self-supported silver nanoparticles containing bacterial cellulose membranes,” Materials Science and Engineering C, vol. 28, no. 4, pp. 515– 518.
  • Ifuku, S., Tsuji, M., Morimoto, M., Saimoto, H., Yano, H., 2009. Synthesis of silver nanoparticles templated by TEMPO-mediated oxidized bacterial cellulose nanofibers. Biomacromolecules, 10(9), 2714-2717.
  • Iguchi, M., Yamanaka, S., Budhiono, A., 2000. Bacterial cellulose—a masterpiece of nature's arts. Journal of Materials Science, 35(2), 261-270.
  • Keshk, S. M. A. S., 2014. Bacterial cellulose production and its industrial applications. J Bioprocess Biotech, 4(150), 2.
  • Kucińska-Lipka, J., Gubanska, I., &Janik, H., 2015. Bacterial cellulose in the field of wound healing and regenerative medicine of skin: recent trends and future prospectives. Polymer Bulletin, 72(9), 2399-2419.
  • Lansdown, A. B. G. A, 2010. Pharmacological and Toxicological Profileof Silver as an Antimicrobial Agent in Medical Devices, Advances in Pharmacological Sciences. Adv. Pharmacol. Sci. 2010, 1−16.
  • Lee, H. Y., Park, H. K., Lee, Y. M., Kim, K., & Park, S. B., 2007. A practical procedure for producing silver nanocoated fabric and its antibacterial evaluation for biomedical applications. Chemical Communications, (28), 2959-2961.
  • Li, Z.; Wang, L.; Chen, S.; Feng, C.; Chen, S.; Yin, N.; Yang, J.; Wang, H.; Xu, Y., 2015. Facilely Green Synthesis of Silver Nanoparticles into Bacterial Cellulose. Cellulose, 22, 373−383.
  • Maneerung, T., Tokura, S., &Rujiravanit, R., 2008. Impregnation of silver nanoparticles into bacterial cellulose for antimicrobial wound dressing. Carbohydrate polymers, 72(1), 43-51.
  • Pal, S., Nisi, R., Stoppa, M., &Licciulli, A., 2017. Silver-Functionalized Bacterial Cellulose as Antibacterial Membrane for Wound-Healing Applications. ACS Omega, 2(7), 3632-3639.
  • Paladini, F.; Pollini, M.; Sannino, A.; Ambrosio, 2015. L. Metal-Based Antibacterial Substrates for Biomedical Applications. Biomacromolecules , 16, 1873−1885.
  • Pinto, R. J. B.; Marques, P. A. A. P.; Neto, C. P.; Trindade, T. 2009. Antibacterial activity of nanocomposites of silver and bacterial or vegetable cellulosic fibers. Acta Biomaterialia, , 5, 2279-2289
  • Rieger, K. A., Cho, H. J., Yeung, H. F., Fan, W., &Schiffman, J. D., 2016. Antimicrobial activity of silver ions released from zeolites immobilized on cellulose nanofiber mats. ACS applied materials & interfaces, 8(5), 3032-3040.
  • Schramm, M., Hestrin, S., 1954, Factors affecting production of cellulose at the air/liquid interface of a culture of Acetobacter xylinum. Microbiology, 11(1), 123-129.
  • Shi, Z., Zhang, Y., Phillips, G. O., & Yang, G., 2014. Utilization of bacterial cellulose in food. Food Hydrocolloids, 35, 539-545.
  • Sohoni, S., Sridhar, R., Mandal, G.,1991. The effect of grinding aids on the fine grinding of limestone, quartz and Portland cement clinker. Powder technology, 67(3), 277-286.
  • Valla, S., Kjosbakken, J., 1982. Cellulose-negative mutants of Acetobacter xylinum. Microbiology, 128(7), 1401-1408.
  • Weissermel, K., Arpe, H. J., 2008. Industrial organic chemistry. John Wiley & Sons.
  • Wu, J., Zheng, Y., Song, W., Luan, J., Wen, X., Wu, Z., & Guo, S. (2014). In situ synthesis of silver-nanoparticles/bacterial cellulose composites for slow-released antimicrobial wound dressing. Carbohydrate polymers, 102, 762-771.
  • Wu, Z. Y., Liang, H. W., Chen, L. F., Hu, B. C., & Yu, S. H., 2015. Bacterial cellulose: A robust platform for design of three dimensional carbon-based functional nanomaterials. Accounts of chemical research, 49(1), 96-105.
  • Yakuphanoglu, F., Okur, S., 2010. Analysis of electronic parameters and interface states of boron dispersed triethanolamine/p-Si structure by AFM, I–V, C–V–f and G/ω–V–f techniques. Microelectronic Engineering, 87(1), 30-34.
  • Yang, G.; Xie, J.; Hong, F.; Cao, Z.; Yang, X., 2012. Antimicrobial Activity of Silver Nanoparticle Impregnated Bacterial Cellulose Membrane: Effect of Fermentation Carbon Sources of BacterialCellulose. Carbohydr. Polym. 87, 839−845.
  • You, C.; Han, C.; Wang, X.; Zheng, Y.; Li, Q.; Hu, X.; Sun, H., 2012. The Progress of Silver Nanoparticles in the Antibacterial Mechanism.
  • Zang, S., Zhang, R., Chen, H., Lu, Y., Zhou, J., Chang, X., & Yang, G., 2015. Investigation on artificial blood vessels prepared from bacterial cellulose. Materials Science and Engineering: C, 46, 111-117.
There are 29 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Araştırma Articlessi \ Research Articles
Authors

Aytül Sofu 0000-0002-1725-6315

Publication Date March 25, 2019
Submission Date November 5, 2018
Acceptance Date January 10, 2019
Published in Issue Year 2019 Volume: 7 Issue: 1

Cite

APA Sofu, A. (2019). FARKLI METODLARLA ELDE EDİLEN NANO GÜMÜŞ PARÇACIKLI/BAKTERİYEL SELÜLOZ (AG/BS) NANOKOMPOZITIN ANTİBAKTERİYEL ÖZELLİĞİNİN BELİRLENMESİ. Mühendislik Bilimleri Ve Tasarım Dergisi, 7(1), 161-166. https://doi.org/10.21923/jesd.478755