Research Article
BibTex RIS Cite

BURSA-ACEMLER BÖLGESİ DES VE DP VERİLERİ İLE ISIL UÇLAŞMA MODELLEMESİ

Year 2019, Volume: 7 Issue: 4, 751 - 760, 19.12.2019
https://doi.org/10.21923/jesd.494435

Abstract

Doğada, basınç, sıcaklık ve derişim farklılığı nedeniyle uçlaşma
akımları meydana gelir. Doğal potansiyel (DP) yöntemi, yorumlama çalışmalarında
geleneksel olarak kullanılagelen popüler jeofizik araç olup, bu yöntem uçlaşma
akımlarının yarattığı doğal potansiyel farklarının ölçülmesine dayanır. Bu
çalışmada, ısıl uçlaşma problemi kümelenmiş elemanlar ağı modeli ile çözülerek
bir jeotermal alana uygulanmıştır. Bu yöntemin diğer geleneksel jeofizik
yöntemlere kıyasla temel üstünlüğü, incelenen sistemin karmaşık doğası hakkında
daha detaylı bilgi verebilmesidir. Bursa ili Çekirge Mahallesi’nin
kuzeybatısında yer alan Acemler Mevkiinden toplanan düşey elektrik sondaj (DES)
ve DP verileri öncelikle geleneksel yöntemlerle(ters çözüm) değerlendirilmiş,
elde edilen parametreler kullanılarak alanın ısıl uçlaşma modeli kurulmuştur.  Böylece jeotermal alan için en uygun termal
ve jeofizik parametre değerleri, kaynak yerleri ve sayıları ile jeolojik
birimlerin geometrik yapıları saptanmıştır. Bu çalışma ile elde edilen
sonuçlar, ısıl uçlaşma yönteminin DP verilerinin yorumlanmasında güçlü bir araç
oluşturduğunu ve jeotermal sistemlerin çeşitli özelliklerinin belirlenmesinde
etkin şekilde kullanılabileceğini göstermiştir.

References

  • Başokur, A. T., 2004. Düşey Elektrik Sondajı Verilerinin Yorumu. Ankara: A. Ü. , Müh. Fak. Jeofizik Müh. Bölümü.
  • Bobachev, A.A., Modin, I.N., Shevnin, V.A., 2002. IPI2WIN v2.1, Moscow State University, Geological Faculty, Department of Geophysics (yayınlanmamıştır).
  • Bodvarsson, G.S., 1982. Mathematical Modeling of the Behavior of Geothermal Systems under Exploitation, DoktoraTezi. California Berkeley Üniversitesi, USA.
  • Corwin, R.F., 1990. The Self-Potential Method for Environmental and Engineering Applications. S.H. Ward (Edt.), Geotechnical and Environmental Geophysics içinde, (s. 127–145), Tulsa: Society of Exploration Geophysicists.
  • Corwin, R.F., Hoover, D.B.,1979. The Self-potential Method in geothermal exploration. Geophysics, 44, 226-245.
  • de Witte, L., 1948. A New Method of Interpretation of Self-Potential Data. Geophysics, 13, 600-608.
  • Drahor M.G., Berge M.A., 2006. Geophysical Investigations of the Seferihisar Geothermal Area, Western Anatolia, Turkey. Geothermics, 35, 302-320.
  • Erişen B., Öngür T., 1976. Bursa City Thermal Water Study. Report No: 5659. Mineral Research and Exploration Institute (MTA), Ankara, Turkey.
  • Erişen, B., Akkuş, İ., Uygur, N., Koçak, A., 1996. Türkiye Jeotermal Envanteri. Ankara: Maden Tetkik ve Arama Genel Müdürlüğü.
  • Giampaolo V., Calabrese, D., Rizzo, E., 2016. Transport Processes in Porous Media by Self-Potential Method. Applied and Environmental Soil Science, 2016, 1-12. Gök, E., Polat, O., 2012. An Assessment of the Seismicity of the Bursa Region from a Temporary Seismic Network. PAGEOPH, 169, 659-675.
  • Haklıdır, F.S.T., 2013. Hydro-geochemical Evaluation of Thermal, Mineral and Cold Waters between Bursa City and Mount Uludağ in the South Marmara Region of Turkey. Geothermics, 48, 132-145.
  • Ishido, T., Mizutani, H., Baba, K., 1983. Streaming Potential Observations, Using Geothermal Wells and In Situ Electrokinetic Coupling Coefficients under High Temperature. Tectonophysics, 91, 89-104.
  • Madden, T.R., 1971. The Resolving Power of Geoelectric Measurements for Delineating Resistive Zones with the Crust. T.G. Haecock (Edt.), The Structure and Physical Properties of the Earth’s Crust. AGU Monograph Series-14 içinde (s.95). Washington DC: American Geophysical Union.
  • Marshall, D.J., Madden, T.R., 1959. Induced Polarization, a Study of Its Causes. Geophysics, 24, 790.
  • Meiser, P., 1962. A Method for Quantitative Interpretation of Self-Potential Measurements. Geophys. Prospect., 10, 203-218.
  • Nourbehecht, B., 1963. Irreversible Thermodynamics Effects in Inhomogenous Media and their Application in Certain Geoelectric Problems. Doktora Tezi. M.I.T., USA.
  • Oliveti, I., Cardarelli E., 2017. 2D Approach for Modelling Self-Potential Anomalies: Application to Synthetic and Real Data. Bollettino di Geofisica Teorica ed Applicata, 58, 415-430.
  • Onsager, L., 1931. Reciprocal Relations in Irreversible Processes I. Physical Review, 37, 405-426.
  • Özgüler, M.E., Ünay, T., 1978. Bursa Ovası Jeotermal Enerji Aramaları Rezistivite Etüd Raporu, MTA Rapor No:6255, Ankara, Türkiye.
  • Paul, K., 1965. Direct interpretation of self potential anomalies caused by inclined sheet of infinite horizontal extension. Geophysics, 30, 418–423.
  • Ram Babu, H.V., Atchuta Rao, D., 1988. A Rapid Graphical Method for the Interpretation of the Self-Potential Anomaly over a Two-Dimensional Inclined Sheet of Finite Depth Extent. Geophysics, 53, 1126-1128.
  • Sheffer R. M., 2007. Forward Modelling and Inversion of Streaming Potential for the Interpretation of Hydraulic Conditions from Self-Potential Data. Doctorate thesis, The University of British Columbia, Canada.
  • Sındırgı P., 2005. Sıcak Alanlarda Jeofizik Modellemeler ve Uygulamaları, Doktora Tezi, Dokuz Eylül Üniversitesi, Türkiye.
  • Sill, W.R., Johng, D.S., 1979. Self Potential Survey, Roosevelt Hot Spring, UTAH. DOE/DGE topical report. University of Utah.
  • Sill, W.R., 1983. Self-Potential Modeling from Primary Flows. Geophysics, 48, 76-86.
  • Schima, S., Wilt, M., Ross, H.U.S., 1996. Modeling Self-potential Data in the Abraham and Meadow-Hatton Geothermal Systems. Department of Energy, research summaries.
  • Wilt, M., Butler, D., 1990. Numerical Modeling of SP anomalies: Documentation of Program SPPC and Application in Geothechnical Applications of the Self-potential Method. Techncal Report No:4. Department of the Army Waterworks Experiments Station, Corps of Engineers, Mississipi, USA.
  • Yasukawa, K., 1993. A Coupled Self Potential (SP), Fluid and Heat Flow Model for Subsurface Fluid Flow Systems. Yüksek Lisans Tezi. California Üniversitesi, USA.
  • Yasukawa, K., Mogi, T., Widarto, D., Ehara, S., 2003. Numerical Modeling of a Hydrothermal System Around Waita Volcano, Kyushu, Japan, Based on Resistivity and Self–Potential Survey Results, Geothermics, 32(1), 21-46.
  • Yasukawa, K., Ishido, T., Suzuki, I., 2005. Geothermal Reservoir Monitoring by Continuous Self-Potential Measurements, Mori Geothermal Field, Japan. Geothermics, 34(5), 551-567.
  • Yungul, S.H. 1950. Interpretation of Spontaneous Polarization Anomalies Caused by Spheroidal Orebodies. Geophysics, 15, 237-246.

THERMAL COUPLING MODELLING WITH THE VES AND SP DATA OF BURSA-ACEMLER REGION

Year 2019, Volume: 7 Issue: 4, 751 - 760, 19.12.2019
https://doi.org/10.21923/jesd.494435

Abstract

In nature, due to differences in pressure, temperature and
concentration, coupling flows occur. The self potential (SP) method is the
popular geophysical instrument traditionally used in interpretation studies,
which is based on the measurement of the natural potential differences created
by the coupling flows. In this study, the thermal coupling problem was solved
by a lumped elements network model and applied to a geothermal field. The basic
advantage of this method over the other traditional geophysical methods that it
can provide more detailed information about the complex nature of the system
under consideration. The vertical electric sounding (VES) and SP data collected
from the Acemler Location in west of the Çekirge District of Bursa province
were firstly evaluated by traditional methods (inverse solution), and the
thermal coupling model was established by using the obtained parameters. Thus,
the most appropriate thermal and geophysical parameter values ​​for geothermal
fields, the location of the sources and their numbers and the geometrical
structures of the geological formations were determined. The results obtained from
this study showed that the thermal coupling method is a powerful tool in the
interpretation of SP data and it can be used effectively to determine the
various properties of geothermal systems.

References

  • Başokur, A. T., 2004. Düşey Elektrik Sondajı Verilerinin Yorumu. Ankara: A. Ü. , Müh. Fak. Jeofizik Müh. Bölümü.
  • Bobachev, A.A., Modin, I.N., Shevnin, V.A., 2002. IPI2WIN v2.1, Moscow State University, Geological Faculty, Department of Geophysics (yayınlanmamıştır).
  • Bodvarsson, G.S., 1982. Mathematical Modeling of the Behavior of Geothermal Systems under Exploitation, DoktoraTezi. California Berkeley Üniversitesi, USA.
  • Corwin, R.F., 1990. The Self-Potential Method for Environmental and Engineering Applications. S.H. Ward (Edt.), Geotechnical and Environmental Geophysics içinde, (s. 127–145), Tulsa: Society of Exploration Geophysicists.
  • Corwin, R.F., Hoover, D.B.,1979. The Self-potential Method in geothermal exploration. Geophysics, 44, 226-245.
  • de Witte, L., 1948. A New Method of Interpretation of Self-Potential Data. Geophysics, 13, 600-608.
  • Drahor M.G., Berge M.A., 2006. Geophysical Investigations of the Seferihisar Geothermal Area, Western Anatolia, Turkey. Geothermics, 35, 302-320.
  • Erişen B., Öngür T., 1976. Bursa City Thermal Water Study. Report No: 5659. Mineral Research and Exploration Institute (MTA), Ankara, Turkey.
  • Erişen, B., Akkuş, İ., Uygur, N., Koçak, A., 1996. Türkiye Jeotermal Envanteri. Ankara: Maden Tetkik ve Arama Genel Müdürlüğü.
  • Giampaolo V., Calabrese, D., Rizzo, E., 2016. Transport Processes in Porous Media by Self-Potential Method. Applied and Environmental Soil Science, 2016, 1-12. Gök, E., Polat, O., 2012. An Assessment of the Seismicity of the Bursa Region from a Temporary Seismic Network. PAGEOPH, 169, 659-675.
  • Haklıdır, F.S.T., 2013. Hydro-geochemical Evaluation of Thermal, Mineral and Cold Waters between Bursa City and Mount Uludağ in the South Marmara Region of Turkey. Geothermics, 48, 132-145.
  • Ishido, T., Mizutani, H., Baba, K., 1983. Streaming Potential Observations, Using Geothermal Wells and In Situ Electrokinetic Coupling Coefficients under High Temperature. Tectonophysics, 91, 89-104.
  • Madden, T.R., 1971. The Resolving Power of Geoelectric Measurements for Delineating Resistive Zones with the Crust. T.G. Haecock (Edt.), The Structure and Physical Properties of the Earth’s Crust. AGU Monograph Series-14 içinde (s.95). Washington DC: American Geophysical Union.
  • Marshall, D.J., Madden, T.R., 1959. Induced Polarization, a Study of Its Causes. Geophysics, 24, 790.
  • Meiser, P., 1962. A Method for Quantitative Interpretation of Self-Potential Measurements. Geophys. Prospect., 10, 203-218.
  • Nourbehecht, B., 1963. Irreversible Thermodynamics Effects in Inhomogenous Media and their Application in Certain Geoelectric Problems. Doktora Tezi. M.I.T., USA.
  • Oliveti, I., Cardarelli E., 2017. 2D Approach for Modelling Self-Potential Anomalies: Application to Synthetic and Real Data. Bollettino di Geofisica Teorica ed Applicata, 58, 415-430.
  • Onsager, L., 1931. Reciprocal Relations in Irreversible Processes I. Physical Review, 37, 405-426.
  • Özgüler, M.E., Ünay, T., 1978. Bursa Ovası Jeotermal Enerji Aramaları Rezistivite Etüd Raporu, MTA Rapor No:6255, Ankara, Türkiye.
  • Paul, K., 1965. Direct interpretation of self potential anomalies caused by inclined sheet of infinite horizontal extension. Geophysics, 30, 418–423.
  • Ram Babu, H.V., Atchuta Rao, D., 1988. A Rapid Graphical Method for the Interpretation of the Self-Potential Anomaly over a Two-Dimensional Inclined Sheet of Finite Depth Extent. Geophysics, 53, 1126-1128.
  • Sheffer R. M., 2007. Forward Modelling and Inversion of Streaming Potential for the Interpretation of Hydraulic Conditions from Self-Potential Data. Doctorate thesis, The University of British Columbia, Canada.
  • Sındırgı P., 2005. Sıcak Alanlarda Jeofizik Modellemeler ve Uygulamaları, Doktora Tezi, Dokuz Eylül Üniversitesi, Türkiye.
  • Sill, W.R., Johng, D.S., 1979. Self Potential Survey, Roosevelt Hot Spring, UTAH. DOE/DGE topical report. University of Utah.
  • Sill, W.R., 1983. Self-Potential Modeling from Primary Flows. Geophysics, 48, 76-86.
  • Schima, S., Wilt, M., Ross, H.U.S., 1996. Modeling Self-potential Data in the Abraham and Meadow-Hatton Geothermal Systems. Department of Energy, research summaries.
  • Wilt, M., Butler, D., 1990. Numerical Modeling of SP anomalies: Documentation of Program SPPC and Application in Geothechnical Applications of the Self-potential Method. Techncal Report No:4. Department of the Army Waterworks Experiments Station, Corps of Engineers, Mississipi, USA.
  • Yasukawa, K., 1993. A Coupled Self Potential (SP), Fluid and Heat Flow Model for Subsurface Fluid Flow Systems. Yüksek Lisans Tezi. California Üniversitesi, USA.
  • Yasukawa, K., Mogi, T., Widarto, D., Ehara, S., 2003. Numerical Modeling of a Hydrothermal System Around Waita Volcano, Kyushu, Japan, Based on Resistivity and Self–Potential Survey Results, Geothermics, 32(1), 21-46.
  • Yasukawa, K., Ishido, T., Suzuki, I., 2005. Geothermal Reservoir Monitoring by Continuous Self-Potential Measurements, Mori Geothermal Field, Japan. Geothermics, 34(5), 551-567.
  • Yungul, S.H. 1950. Interpretation of Spontaneous Polarization Anomalies Caused by Spheroidal Orebodies. Geophysics, 15, 237-246.
There are 31 citations in total.

Details

Primary Language Turkish
Subjects Geological Sciences and Engineering (Other)
Journal Section Araştırma Articlessi \ Research Articles
Authors

Petek Sındırgı 0000-0002-1328-9988

Publication Date December 19, 2019
Submission Date December 10, 2018
Acceptance Date May 21, 2019
Published in Issue Year 2019 Volume: 7 Issue: 4

Cite

APA Sındırgı, P. (2019). BURSA-ACEMLER BÖLGESİ DES VE DP VERİLERİ İLE ISIL UÇLAŞMA MODELLEMESİ. Mühendislik Bilimleri Ve Tasarım Dergisi, 7(4), 751-760. https://doi.org/10.21923/jesd.494435