Research Article
BibTex RIS Cite

ESTIMATION OF THE FRICTION PARAMETERS OF LINEAR PNEUMATIC CYLINDERS

Year 2020, Volume: 8 Issue: 2, 397 - 406, 25.06.2020
https://doi.org/10.21923/jesd.569339

Abstract

Nowadays, pneumatic actuation systems are utilized in many applications due to their outstanding advantages. However, the pneumatics possess nonlinear characteristics that complicate precise motion control. To extend the use of pneumatic actuators to different precise applications their non-linearity should be evaluated and compensated. This is only possible by correctly estimating the non-linear parameters that exist in pneumatic systems. The friction forces in pneumatic cylinders is one of the main nonlinear parameters. These parameters cannot be defined directly or listed precisely for any produced particular cylinder in manufacturer’s catalog. They should be estimated accurately by experimental methods. This paper presents a new, simple and cheap experimental method for identification of friction force parameters for standard linear double acting pneumatic cylinders. Two different pneumatic cylinders have been examined with the proposed method and it has been seen that the results sound promising to use in later control applications.

References

  • Al-Bender, F., Lampaert, V., & Swevers, J., 2005. The generalized Maxwell-slip model: A novel model for friction simulation and compensation. IEEE Transactions on Automatic Control, 50(11), 1883–1887. https://doi.org/10.1109/TAC.2005.858676
  • Andrighetto, P. L., Valdiero, A. C., & Carlotto, L., 2006. Study of the friction behavior in industrial pneumatic actuators. ABCM Symposium Series in Mechatronics, 2(2005), 369–376
  • Belforte,G.,D’Alfio,N.,Raparelli,T., 1989. Experimental Analysis of Friction Forces in Pneumatic Cylinders. The Journal of Fluid Control, Vol.20, 42-60
  • Chang, H., Lan, C. W., Chen, C. H., Tsung, T. T., & Guo, J. Bin., 2012. Measurement of frictional force characteristics of pneumatic cylinders under dry and lubricated conditions. Przeglad Elektrotechniczny, 88(7 B), 261–264
  • Dağdelen, M., & Sarıgeçili, M. İ., 2017. Development of a Conceptual Model for Wrist/Forearm Rehabilitation Robot with Two Degrees of Freedom. Advances in Robot Design and Intelligent Control, 523–530. https://doi.org/10.1007/978-3-319-49058-8
  • DAHL, P. R., 1968. [19]-English: A Solid Friction Model (modèle Dahl). Technical Report, The Aerospace Corporation, El Segundo, 158
  • De Wit, C. C., Olsson, H., Astrom, K. J., & Lischinsky, P., 1995. A New Model of Control Systems with Friction. IEEE Transactions On Automatic Control, 40(3), 419–425
  • Dupont, P., Armstrong, B., & Hayward, V., 2000. Elasto-plastic friction model: Contact compliance and stiction. Proceedings of the American Control Conference, 2(June), 1072–1077. https://doi.org/10.1109/acc.2000.876665
  • Földi, L., Beres, Z.,Sarközi,E., 2011. Novel Cylinder Positioning System Realized by Using Solenoid Valves. Sustainable Construction and Design, 142-151
  • Guenther, R., Perondi, E. C., Depieri, E. R., & Valdiero, A. C., 2006. Cascade controlled pneumatic positioning system with LuGre model based friction compensation. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 28(1), 48–57. https://doi.org/10.1590/S1678-58782006000100006
  • Harris, P. G., O’Donnell, G. E., & Whelan, T., 2012. Modelling and identification of industrial pneumatic drive system. International Journal of Advanced Manufacturing Technology, 58(9–12), 1075–1086. https://doi.org/10.1007/s00170-011-3447-7
  • Hejrati, B., & Najafi, F., 2013. Accurate pressure control of a pneumatic actuator with a novel pulse width modulation-sliding mode controller using a fast switching On/Off valve. Proceedings of the Institution of Mechanical Engineers. Part I: Journal of Systems and Control Engineering, 227(2), 230–242. https://doi.org/10.1177/0959651812459303
  • Karnopp, D., 1985. Computer Simulation of Stick-Slip Friction in Mechanical Dynamic Systems. ASME J. Dyn. Sys., Meas., Control 107(March 1985), 100–103
  • Korucu, S., Samtaş, G., & Soy, G., 2015. Design and Experimental Investigation of Pneumatic Movement Mechanism Supported by Mechanic Cam and Crank Shaft. TEM Journal, 4(1), 22–34
  • Kosari, H., & Moosavian, S. A. A., 2015. Friction compensation in a pneumatic actuator using recursive least square algorithm. 2015 Australian Control Conference, AUCC 2015, 81–86
  • Lafmejani, A. S., Masouleh, M. T., & Kalhor, A., 2016. An experimental study on friction identification of a pneumatic actuator and dynamic modeling of a proportional valve. 4th RSI International Conference on Robotics and Mechatronics, ICRoM 2016, 166–172. https://doi.org/10.1109/ICRoM.2016.7886840
  • Liu, Y. F., Li, J., Zhang, Z. M., Hu, X. H., & Zhang, W. J., 2015. Experimental comparison of five friction models on the same test-bed of the micro stick-slip motion system. Mechanical Sciences, 6(1), 15–28. https://doi.org/10.5194/ms-6-15-2015
  • Ritcher ,R.R.M, Zamberian, C.V., Valdiero ,A.C.& Rasia, L.A., 2014. Friction dynamics mathematical modelling in special pneumatic cylinder. ABCM Symposium Series in Mechatronics, vol.6, 800-808
  • Saha, A., Wahi, P., Wiercigroch, M., & Stefański, A., 2016. A modified LuGre friction model for an accurate prediction of friction force in the pure sliding regime. International Journal of Non-Linear Mechanics, 80, 122–131. https://doi.org/10.1016/j.ijnonlinmec.2015.08.013
  • Saleem, A., Wong, C. B., Pu, J., & Moore, P. R., 2009. Mixed-reality environment for frictional parameters identification in servo-pneumatic system. Simulation Modelling Practice and Theory, 17(10), 1575–1586. https://doi.org/10.1016/j.simpat.2009.06.016
  • Swevers, J., Al-Bender, F., Ganseman, C. G., & Prajogo, T., 2000. An integrated friction model structure with improved presliding behavior for accurate friction compensation. IEEE Transactions on Automatic Control, 45(4), 675–686. https://doi.org/10.1109/9.847103
  • Tran, X. B., & Yanada, H., 2013. Dynamic Friction Behaviors of Pneumatic Cylinders. Intelligent Control and Automation, 04(02), 180–190. https://doi.org/10.4236/ica.2013.42022
  • Wang, J., Wang, J. D., Daw, N., Wu, Q. H., & Member, S., 2004. Identification of Pneumatic Cylinder Friction Parameters Using Genetic Algorithms. IEEE/ASME Transactions on Mechatronics, 9(1), 100–107

DOĞRUSAL PNÖMATİK SİLİNDİRLERİN SÜRTÜNME PARAMETRELERİNİN TAHMİNİ

Year 2020, Volume: 8 Issue: 2, 397 - 406, 25.06.2020
https://doi.org/10.21923/jesd.569339

Abstract

Günümüzde pnömatik aktüatör sistemleri öne çıkan avantajlarından dolayı birçok uygulamada tercih edilmektedirler. Fakat bu sistemler hassas hareket kontrolünü zorlaştıran lineer olmayan karakteristikler barındırırlar. Pnömatik aktüatörlerin kullanımlarını farklı hassas uygulamalara da genişletebilmek için, doğrusal olmayan özelliklerinin belirlenip telafi edilmesi gerekir. Bunun tek yolu pnömatik sistemlerde mevcut olan doğrusal olmayan parametrelerin doğru bir şekilde tahmin edilmesidir. Pnömatik silindirlerdeki sürtünme kuvvetleri esas doğrusal olmayan parametrelerdir. Bu parametreler direkt olarak belirlenemezler ve üretici kataloglarında üretilen herhangi bir belirli silindir için hassas bir şekilde belirtilmezler. Bu parametrelerin deneysel yollarla hassas bir şekilde belirlenmesi gerekmektedir. Bu çalışma, standart, düz çift etkili pnömatik silindirlerin sürtünme kuvveti parametrelerinin saptanması için yeni, basit ve ucuz bir deneysel yöntem sunmaktadır. Önerilen yöntemle iki farklı pnömatik silindir incelenmiş ve sonuçların daha sonraki kontrol uygulamalarında kullanılması umut verici olduğu görülmüştür.

References

  • Al-Bender, F., Lampaert, V., & Swevers, J., 2005. The generalized Maxwell-slip model: A novel model for friction simulation and compensation. IEEE Transactions on Automatic Control, 50(11), 1883–1887. https://doi.org/10.1109/TAC.2005.858676
  • Andrighetto, P. L., Valdiero, A. C., & Carlotto, L., 2006. Study of the friction behavior in industrial pneumatic actuators. ABCM Symposium Series in Mechatronics, 2(2005), 369–376
  • Belforte,G.,D’Alfio,N.,Raparelli,T., 1989. Experimental Analysis of Friction Forces in Pneumatic Cylinders. The Journal of Fluid Control, Vol.20, 42-60
  • Chang, H., Lan, C. W., Chen, C. H., Tsung, T. T., & Guo, J. Bin., 2012. Measurement of frictional force characteristics of pneumatic cylinders under dry and lubricated conditions. Przeglad Elektrotechniczny, 88(7 B), 261–264
  • Dağdelen, M., & Sarıgeçili, M. İ., 2017. Development of a Conceptual Model for Wrist/Forearm Rehabilitation Robot with Two Degrees of Freedom. Advances in Robot Design and Intelligent Control, 523–530. https://doi.org/10.1007/978-3-319-49058-8
  • DAHL, P. R., 1968. [19]-English: A Solid Friction Model (modèle Dahl). Technical Report, The Aerospace Corporation, El Segundo, 158
  • De Wit, C. C., Olsson, H., Astrom, K. J., & Lischinsky, P., 1995. A New Model of Control Systems with Friction. IEEE Transactions On Automatic Control, 40(3), 419–425
  • Dupont, P., Armstrong, B., & Hayward, V., 2000. Elasto-plastic friction model: Contact compliance and stiction. Proceedings of the American Control Conference, 2(June), 1072–1077. https://doi.org/10.1109/acc.2000.876665
  • Földi, L., Beres, Z.,Sarközi,E., 2011. Novel Cylinder Positioning System Realized by Using Solenoid Valves. Sustainable Construction and Design, 142-151
  • Guenther, R., Perondi, E. C., Depieri, E. R., & Valdiero, A. C., 2006. Cascade controlled pneumatic positioning system with LuGre model based friction compensation. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 28(1), 48–57. https://doi.org/10.1590/S1678-58782006000100006
  • Harris, P. G., O’Donnell, G. E., & Whelan, T., 2012. Modelling and identification of industrial pneumatic drive system. International Journal of Advanced Manufacturing Technology, 58(9–12), 1075–1086. https://doi.org/10.1007/s00170-011-3447-7
  • Hejrati, B., & Najafi, F., 2013. Accurate pressure control of a pneumatic actuator with a novel pulse width modulation-sliding mode controller using a fast switching On/Off valve. Proceedings of the Institution of Mechanical Engineers. Part I: Journal of Systems and Control Engineering, 227(2), 230–242. https://doi.org/10.1177/0959651812459303
  • Karnopp, D., 1985. Computer Simulation of Stick-Slip Friction in Mechanical Dynamic Systems. ASME J. Dyn. Sys., Meas., Control 107(March 1985), 100–103
  • Korucu, S., Samtaş, G., & Soy, G., 2015. Design and Experimental Investigation of Pneumatic Movement Mechanism Supported by Mechanic Cam and Crank Shaft. TEM Journal, 4(1), 22–34
  • Kosari, H., & Moosavian, S. A. A., 2015. Friction compensation in a pneumatic actuator using recursive least square algorithm. 2015 Australian Control Conference, AUCC 2015, 81–86
  • Lafmejani, A. S., Masouleh, M. T., & Kalhor, A., 2016. An experimental study on friction identification of a pneumatic actuator and dynamic modeling of a proportional valve. 4th RSI International Conference on Robotics and Mechatronics, ICRoM 2016, 166–172. https://doi.org/10.1109/ICRoM.2016.7886840
  • Liu, Y. F., Li, J., Zhang, Z. M., Hu, X. H., & Zhang, W. J., 2015. Experimental comparison of five friction models on the same test-bed of the micro stick-slip motion system. Mechanical Sciences, 6(1), 15–28. https://doi.org/10.5194/ms-6-15-2015
  • Ritcher ,R.R.M, Zamberian, C.V., Valdiero ,A.C.& Rasia, L.A., 2014. Friction dynamics mathematical modelling in special pneumatic cylinder. ABCM Symposium Series in Mechatronics, vol.6, 800-808
  • Saha, A., Wahi, P., Wiercigroch, M., & Stefański, A., 2016. A modified LuGre friction model for an accurate prediction of friction force in the pure sliding regime. International Journal of Non-Linear Mechanics, 80, 122–131. https://doi.org/10.1016/j.ijnonlinmec.2015.08.013
  • Saleem, A., Wong, C. B., Pu, J., & Moore, P. R., 2009. Mixed-reality environment for frictional parameters identification in servo-pneumatic system. Simulation Modelling Practice and Theory, 17(10), 1575–1586. https://doi.org/10.1016/j.simpat.2009.06.016
  • Swevers, J., Al-Bender, F., Ganseman, C. G., & Prajogo, T., 2000. An integrated friction model structure with improved presliding behavior for accurate friction compensation. IEEE Transactions on Automatic Control, 45(4), 675–686. https://doi.org/10.1109/9.847103
  • Tran, X. B., & Yanada, H., 2013. Dynamic Friction Behaviors of Pneumatic Cylinders. Intelligent Control and Automation, 04(02), 180–190. https://doi.org/10.4236/ica.2013.42022
  • Wang, J., Wang, J. D., Daw, N., Wu, Q. H., & Member, S., 2004. Identification of Pneumatic Cylinder Friction Parameters Using Genetic Algorithms. IEEE/ASME Transactions on Mechatronics, 9(1), 100–107
There are 23 citations in total.

Details

Primary Language English
Subjects Mechanical Engineering
Journal Section Research Articles
Authors

Mustafa Dağdelen 0000-0002-1448-104X

Mehmet İlteriş Sarıgeçili This is me 0000-0002-9969-2005

Publication Date June 25, 2020
Submission Date May 23, 2019
Acceptance Date April 25, 2020
Published in Issue Year 2020 Volume: 8 Issue: 2

Cite

APA Dağdelen, M., & Sarıgeçili, M. İ. (2020). ESTIMATION OF THE FRICTION PARAMETERS OF LINEAR PNEUMATIC CYLINDERS. Mühendislik Bilimleri Ve Tasarım Dergisi, 8(2), 397-406. https://doi.org/10.21923/jesd.569339