ORGANİK MADDE GİDERİMİ İÇİN EŞ ANLI (IN-SITU) FE-KATKILI TİO2’NİN FOOKATALİTİK AKTİVİTESİ
Year 2020,
Volume: 8 Issue: 3, 664 - 670, 24.09.2020
Nazlı Türkten
,
Ceyda Senem Uyguner Demirel
Abstract
Hümik asitler, su ortamlarındaki doğal organik maddenin (DOM) büyük bir kısmını temsil etmektedirler. Hümik asitlerin tam olarak tanımlanmamış kimyasal bileşimleri ve karmaşık yapıları sebebiyle doğal sularda bulunmaları istenmemektedir. Bu çalışmada, hümik asidin 100 kDa moleküler boyut fraksiyonunun degradasyonunun incelenmesi için sentezlenen Fe katkılı TiO2 fotokatalizörlerinin simüle edilmiş güneş ışığı altındaki fotokatalitik aktivitesi incelenmiştir. Bu amaçla, beş farklı Fe/Ti molar oranından oluşan fotokatalizörler, eş-anlı (in-situ) sol jel yöntemi ile hazırlanmıştır. Hazırlanan Fe katkılı TiO2 fotokatalizörlerinin karakterizasyonu FTIR spektroskopik yöntemi ve Raman spektroskopisi kullanılarak yapılmıştır. Katalizörlerin optimum dozlarının hümik asidin giderimine olan etkisi yapılan çalışmada belirlenmiştir. Buna ilaveten, UV-vis spektroskopisinin parametrelerine dayanılarak hümik asit gideriminin kinetiği incelenmiştir. Ayrıca, fotokatalitik degradasyon sırasında hümik asit yapısında gerçekleşen değişikliklerin açıklanabilmesi için uyarılma-emisyon matrisi (UEM) gibi spektroskopik floresans teknikleri kullanılarak yapılmıştır. Elde edilen sonuçlar eş-anlı (in-situ) sol-jel yöntemi ile hazırlanan fotokatalizörlerin kullanılması ile 120 dakika fotokatalitik işlem sonucunda hümik asit gideriminin % 20 ile % 25 aralığında olabileceğini göstermektedir.
Supporting Institution
Kırşehir Ahi Evran Üniversitesi
Project Number
FEF.A4.19.009-A4
References
- Araña, J., Gonzalez Diaz, O., Dona Rodriguez, J.M., Herrera Melian, J.A., Garrigai Cabo, C., Perez Pena, J., Carman Hidalgo, M. and Navio-Santos, J.A., 2003. Role of Fe3+/Fe2+ as TiO2 dopant ions in photocatalytic degradation of carboxylic acids. Journal of Molecular Catalysis A: Chemical, 197, 157-171.
- Baek, M.-H., Hong, J.-S., Yoon, J.-W., and Suh J.-K., 2013. Photocatalytic degradation of humic acid by Fe-TiO2 supported on spherical activated carbon with enhanced activity. International Journal of Photoenergy, 2013, 1-5.
- Birben, N.C., Uyguner-Demirel, C.S., Sen-Kavurmaci, S., Gurkan, Y.Y., Turkten, N., Cinar, Z., Bekbolet, M., 2017. Solar photocatalytic degradation of natural organic matter in the presence of Fe3+-doped TiO2 specimens, Catalysis Today, 281, 78–84.
- Cong, Y., Zhang, J., Chen, F., Anpo, M., He, D., 2007. Preparation, Photocatalytic Activity, and Mechanism of Nano-TiO2 Co-Doped with Nitrogen and Iron (III), Journal of Physical Chemistry C, 111, 10618-10623.
- Delekar, S.D., Yadava, H.M., Achary, S.N., Meenac, S.S., Pawar, S.H., 2012. Structural refinement and photocatalytic activity of Fe-doped anatase TiO2, Applied Surface Science, 263, 536–545.
- Navio, J.A. Colh, G.D., Litter, M. I, Bianco, G.N., 1996. Synthesis, characterization and photocatalytic properties of iron-doped titania semiconductors prepared from TiO2, and iron (III) acetylacetonate. Journal of Molecular Catalysis A: Chemical. 106, 267-176
- Šijaković-Vujičić, N., Gotić, M., Musić, S., Ivanda, M., Popovıc´, S., 2004. Synthesis and microstructural properties of
- Fe-TiO2 nanocrystalline particles obtained by a modified sol-gel method. Journal of Sol-Gel Science and Technology, 30, 5–19.
- Shen, X.-Z., Liu, Z.-C., Xie, S.-M., Guo, J., 2009. Degradation of nitrobenzene using titania photocatalyst co-doped with nitrogen and cerium under visible light illumination. Journal of Hazardous Materials, 162, 1193-1198.
- Türkten, N., Çınar, Z., 2019. Preparatıon, Characterızatıon and photocatalytıc propertıes of iron-doped TiO2
photocatalysts. The Proceedings of the 4th International Porous and Powder Materials Symposium and Exhibition PPM.
- Yalçın, Y., Kılıç, M. Çınar, Z., 2010. Fe3+-doped TiO2: A combined experimental and computational approach to the evaluation of visible light activity. Applied Catalysis B: Environmental, 99, 469-477.
- Yuan, R., Zhou, B., Hua, D. and Shi, C., 2013. Enhanced photocatalytic degradation of humic acids using Al and Fe co-doped TiO2 nanotubes under UV/ozonation for drinking water purification. Journal of Hazardous Materials, 262, 527-538.
- Zhang, Z., Wang, C.-C., Zakaria, R. and Ying, J.Y., 1998. Role of particle size in nanocrystalline TiO2-based photocatalysts. Journal of Physical Chemistry B, 102, 10871-10878.
- Zhu, Z., Zheng, W., He, B., Zhang, J. and Anpo, M., 2004. Characterization of Fe-TiO2 photocatalysts synthesized by
- hydrothermal method and their photocatalytic reactivity for photodegradation of XRG dye diluted in water. Journal of Molecular Catalysis A: Chemical, 216, 35-43.
PHOTOCATALYTIC ACTIVITY OF IN-SITU FE-DOPED TIO2 FOR NATURAL ORGANIC MATTER REMOVAL
Year 2020,
Volume: 8 Issue: 3, 664 - 670, 24.09.2020
Nazlı Türkten
,
Ceyda Senem Uyguner Demirel
Abstract
Humic acids represent a major fraction of natural organic matter (NOM) in aquatic environments. Having undefined composition and complex ill-defined structures, their presence in natural waters is undesirable. In this study, solar photocatalytic activity of synthesized Fe-doped TiO2 photocatalysts was investigated for the degradation of a 100 kDa molecular size fraction of humic acid. For this purpose, catalysts comprised of 5 different molar ratios of Fe/Ti were prepared by in-situ sol gel method and characterized by FTIR and Raman spectroscopy. Optimum loadings of the catalysts were determined and the kinetics of humic acid removal was investigated focusing on UV–vis spectroscopic parameters. Moreover, fluorescence techniques such as excitation-emission matrix (EEM) were also acquired for elucidating induced structural changes of humic acid during photocatalytic degradation. Results revealed that, using photocatalysts prepared by in-situ sol-gel method 20 to 25% removal of humic acid could be attained after photocatalytic treatment of 120 min.
Project Number
FEF.A4.19.009-A4
References
- Araña, J., Gonzalez Diaz, O., Dona Rodriguez, J.M., Herrera Melian, J.A., Garrigai Cabo, C., Perez Pena, J., Carman Hidalgo, M. and Navio-Santos, J.A., 2003. Role of Fe3+/Fe2+ as TiO2 dopant ions in photocatalytic degradation of carboxylic acids. Journal of Molecular Catalysis A: Chemical, 197, 157-171.
- Baek, M.-H., Hong, J.-S., Yoon, J.-W., and Suh J.-K., 2013. Photocatalytic degradation of humic acid by Fe-TiO2 supported on spherical activated carbon with enhanced activity. International Journal of Photoenergy, 2013, 1-5.
- Birben, N.C., Uyguner-Demirel, C.S., Sen-Kavurmaci, S., Gurkan, Y.Y., Turkten, N., Cinar, Z., Bekbolet, M., 2017. Solar photocatalytic degradation of natural organic matter in the presence of Fe3+-doped TiO2 specimens, Catalysis Today, 281, 78–84.
- Cong, Y., Zhang, J., Chen, F., Anpo, M., He, D., 2007. Preparation, Photocatalytic Activity, and Mechanism of Nano-TiO2 Co-Doped with Nitrogen and Iron (III), Journal of Physical Chemistry C, 111, 10618-10623.
- Delekar, S.D., Yadava, H.M., Achary, S.N., Meenac, S.S., Pawar, S.H., 2012. Structural refinement and photocatalytic activity of Fe-doped anatase TiO2, Applied Surface Science, 263, 536–545.
- Navio, J.A. Colh, G.D., Litter, M. I, Bianco, G.N., 1996. Synthesis, characterization and photocatalytic properties of iron-doped titania semiconductors prepared from TiO2, and iron (III) acetylacetonate. Journal of Molecular Catalysis A: Chemical. 106, 267-176
- Šijaković-Vujičić, N., Gotić, M., Musić, S., Ivanda, M., Popovıc´, S., 2004. Synthesis and microstructural properties of
- Fe-TiO2 nanocrystalline particles obtained by a modified sol-gel method. Journal of Sol-Gel Science and Technology, 30, 5–19.
- Shen, X.-Z., Liu, Z.-C., Xie, S.-M., Guo, J., 2009. Degradation of nitrobenzene using titania photocatalyst co-doped with nitrogen and cerium under visible light illumination. Journal of Hazardous Materials, 162, 1193-1198.
- Türkten, N., Çınar, Z., 2019. Preparatıon, Characterızatıon and photocatalytıc propertıes of iron-doped TiO2
photocatalysts. The Proceedings of the 4th International Porous and Powder Materials Symposium and Exhibition PPM.
- Yalçın, Y., Kılıç, M. Çınar, Z., 2010. Fe3+-doped TiO2: A combined experimental and computational approach to the evaluation of visible light activity. Applied Catalysis B: Environmental, 99, 469-477.
- Yuan, R., Zhou, B., Hua, D. and Shi, C., 2013. Enhanced photocatalytic degradation of humic acids using Al and Fe co-doped TiO2 nanotubes under UV/ozonation for drinking water purification. Journal of Hazardous Materials, 262, 527-538.
- Zhang, Z., Wang, C.-C., Zakaria, R. and Ying, J.Y., 1998. Role of particle size in nanocrystalline TiO2-based photocatalysts. Journal of Physical Chemistry B, 102, 10871-10878.
- Zhu, Z., Zheng, W., He, B., Zhang, J. and Anpo, M., 2004. Characterization of Fe-TiO2 photocatalysts synthesized by
- hydrothermal method and their photocatalytic reactivity for photodegradation of XRG dye diluted in water. Journal of Molecular Catalysis A: Chemical, 216, 35-43.