Research Article
BibTex RIS Cite

A VERIFICATION ANALYSIS FOR PILES IN LIQUEFIABLE SOIL

Year 2020, Volume: 8 Issue: 3, 712 - 719, 24.09.2020
https://doi.org/10.21923/jesd.718144

Abstract

The soil loses its strength and behaves like a liquid when the increasing the pore water pressure under dynamic loads in saturated sandy soils. The large soil displacements can occur on liquefied soils. Pile foundations are applied to bearing capacity problems soil which may be subjected to large lateral displacements due to liquefaction. Although there are many theoretical and practical studies on the behavior of laterally loaded piles in liquefiable soils, there is still no definitive method. The pile damages which are occurred by lateral spreading resulting from liquefaction under dynamic loads have been investigated by many scientists and studies on the causes of damages have increased. Pile response in liquefiable soils and the evaluation of its possible damage are generally assessed by using some available numerical method, for example: finite difference (FDM), finite element (FEM) and boundary element (BEM) methods. In this paper, the FDM method is used to study the pile behavior in liquefiable soils and its reliability is checked by comparison with centrifuge test results from literature. It, in which the effect of liquefaction-induced lateral spreading on pile was evaluated, are also studied. Finally, the analysis results with FLAC 2D are compared with those observed in a centrifuge experiment.

References

  • Abdoun, T., and Wang, Y., 2003. Performance of retrofitted pile foundations subjected to seismically induced lateral spreading. Pacific Conference on Earthquake Engineering, University of Canterbury, Christchurch, New Zealand.
  • Abdoun, T., Dobry, R., Zimmie, T.F., and Zeghal, M., 2005. Centrifuge research of countermeasures to protect pile foundations against liquefaction-induced Lateral Spreading. Journal of Earthquake Engineering, 9(1), 105-125.
  • Arulmoli, K., Muraleetharan, K.K., Hossain, M.M. and Fruth, L.S., 1992. VELACS: Verification of liquefaction analyses by centrifuge studies, laboratory testing program. Soil Data Report, Irvine, California Report-Project, California, 90-0562.
  • Berril, J.B., Christensen, S.A., Keenan, R.P, Okada, W., and Pettinga, J.R., 2001. Studies of LAteral Spreading Forces on a Piled Foundation” Geotechique 51(6), 501-517.
  • Bhattacharya, S., Tokimatsu, K., Goda, K., Sarkar, R., Shadlou, M., and Rouholamin, M., 2014. Collapse of Showa Bridge during 1964 Niigata earthquake: A quantitative reappraisal on the failure mechanisms. Soil Dynamics and Earthquake Engineering, 65, 55-71.
  • Boulanger, R.W., Curras. C.J., Kutter, B.L., Wilson, B.W., and Abghari, A., 1998. Seismic soil-pile-structure interaction experiments and analyses. Journal of Geotechnical and Geoenvironmental Engineering, 125(9), 750-759.
  • Brandenberg, S.J., Boulanger, R.W., Kutter B.L., and Chang, D., 2005. Behavior of pile foundations in laterally spreading ground during centrifuge tests. Journal of Geotechnical and Geoenvironmental Engineering, 131(11), 1378-1391.
  • Byrne, P.M., 1991. A Cyclic Shear-Volume Coupling and Pore-Pressure Model for Sand. In Proceedings 2nd International Conference on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics, Saint. Louis, Missouri, 47-55.
  • Chang, D., Boulanger, R.W., Kutter, B.L., and Brandenberg, S.J., 2005. Experimental Observations of Inertial and Lateral Spreading Loads on Pile Groups during Earthquakes. Geo-Frontiers Congress, Austin, Texas, United States.
  • Cubrinovski, M., Ishihara, K.and Furukawazono, K., 1999. Analysis of Full-Scale Tests on Piles in Deposits Subjected to Liquefaction. 2nd International Conference on Earthquake Geotechnical Engineering, Lisbon, Portugal.
  • Cubrinovski, M., Kokusho, , T., and Ishihara, K., 2006. Interpretation from large-scale table tests on piles undergoing lateral spreading in liquefied soils. Soil Dynamics and Earthquake Engineering, 26(2-4), 275-286.
  • Dobry, R., and Liu, L., 1994. Centrifuge Modelling of Soil Liquefaction. Earthquake Engineering 10. World Conference, Rotterdam, 6801-6809.
  • Dobry, R., Abdoun, T., O'Rourke, T. D., and Goh, S.H., 2003. Single piles in lateral spreads: Field bending moment evaluation. Journal of Geotechnical and Geoenvironmental Engineering, 129(10), 879-889.
  • Finn, W.D.L., and Fujita, N., 2002. Piles in liquefiable soils: seismic analysis and design issues. Soil Dynamics and Earthquake Engineering, 22(9-12), 731-742.
  • FLAC2D- Fast Lagrangian Analysis of Continua User Guide, Dynamic Analysis, 2002.
  • FLAC2D, Software program, Version 6, Itasca Consulting.
  • Haldar, S., and Babu, G.L.S., 2010. Failure mechanisms of pile foundations in liquefiable soil: parametric study. International Journal of Geomechanics, 10(2), 74-84.
  • Heidary-Torkamani, H., Bargi, K., Amirabadi, R., and McCllough, J.N., 2014. Fragility estimation and sensitivity analysis of an idealized pile-supported wharf with batter piles. Soil Dynamics and Earthquake Engineering, 61-62, 92–106.
  • İnternet: Tyagi, W., 2015. Numerical methods in geotechnical engineering (2)-finite difference method. URL: http://www.webcitation.org/query?url=https%3A%2F%2Fgeosynthetic.wordpress.com%2F2015%2F10%2F16%2Fnumerical-methods-in-geotechnical-engineering-2-finite-difference-method%2F++&date=2018-02-21, Last Access Date: 20.09.2017.
  • Ishihara, K., and Cubrinovski, M., 1998. Performance of large-diameter piles subjected to lateral spreading of liquefied deposits. 13th Southeast Asian Geotechnical Conference, Taipei.
  • Liyanapathirana, D.S., and Poulos, H.G., 2002. A numerical model for dynamic soil liquefaction analysis. Soil Dynamics and Earthquake Engineering, 22(9-12), 1007-1015.
  • Liyanapathirana, D.S., and Poulos, H.G., 2003. A pseudo-static approach for seismic analysis of piles ın liquefying soil. Journal of Geotechnical and Geoenvironmental Engineering, 131(12), 1480-1487.
  • Madabhushi, G., Knappett, J., and Haigh S., 2010. Design of Pile Foundations In Liquefiable Soils '' Imperial College Press.
  • Martin, G.R., and Chen, C.Y., 2005. Response of piles due to lateral slope movement. Computers and Structures, 83(8-9), 588-598.
  • Mazak, E., 2016. Kazık davranışının iki ve üç boyutlu olarak araştırılması, Yüksek Lisans Tezi, Kocaeli Üniversitesi Fen Bilimleri Enstitüsü, Kocaeli.(In Turkish)
  • Rollins, K.M., Gerber, T.M., Lane, J.D., and Ashford, S.A., 2005. Lateral resistance of a full-scale pile group in liquefied sand. Journal of the Geotechnical and Geoenvironmental Engineering Division, 131(1), 115-125.
  • Takahashi, A., and Takemura, J., 2005. Liquefaction-induced large displacement of the pile-suppored wharf. Soil Dynamics and Earthquake Engineering, 25(11), 811-825.
  • Tokimatsu, K., and Asaka, Y., 1998. Effects of liquefaction-induced ground displacements on pile performance in the 1995 Hyogoken-Nambu earthquake. Special Issue of Soil and Foundations, 38, 163-177.
  • Wilson, D.W., Boulanger, R.W., and Kutter, B.L., 2000. Observed seismic lateral resistance of liquefying sand. Journal of Geotechnical and Geoenvironmental Engineering, 126(10), 898-906.
  • Yoshida, N., Tazoh, T., Wakamatsu, K., Yasuda, S., Towahata, I., Nakazawa, H., and Kiku, H., 2007.Causes of Showa Bridge collapse in the 1964 Niigata earthquake based on eyewitness testimony. Soils Foundation, 47 (6), pp. 1075-1087.

A VERIFICATION ANALYSIS FOR PILES IN LIQUEFIABLE SOIL

Year 2020, Volume: 8 Issue: 3, 712 - 719, 24.09.2020
https://doi.org/10.21923/jesd.718144

Abstract

Suya doygun kumlu zeminlerde dinamik yükler altında boşluk suyu basıncının artması sonucunda zemin mukavemetini kaybeder ve sıvı gibi davranır. Bunun sonucunda sıvılaşan zeminlerde büyük zemin yerdeğiştirmeleri meydana gelebilir. Taşıma gücü problemleri olan zeminler için kullanılan kazık temeller sıvılaşma olayından dolayı büyük yanal yerdeğiştirmelere maruz kalabilirler. Yatay yüklü kazıkların dinamik yükler altındaki davranışını üzerinde yapılmış birçok nümerik ve deneysel çalışmalar olmasına rağmen, sıvılaşan zeminlerdeki kazık davranışlarını kesin yargılarla belirlemek çok mümkün değildir. Dinamik yükler altında meydana gelen sıvılaşma ve sıvılaşma sonucunda oluşan yanal yayılmanın kazıklarda meydana getirdiği hasarlar birçok bilim adamı tarafından araştırılmış ve oluşan hasarların sebepleri üzerinde yapılan çalışmalar artmıştır. Sıvılaşan zeminlerde kazık davranışı belirlemek için kullanılan bazı sayısal yöntemler mevcuttur, örneğin; sonlu farklar metodu (FDM), sonlu elemanlar metodu (FEM), sınır eleman metodu (BEM). Bu çalışmada, sıvılaşan zemindeki yanal yüklü kazık davranışının analiz sonuçları ile literatürden alınan santrifüj deney sonuçları karşılaştırılmıştır. Sayısal analizler FLAC2D sonlu farklar programı kullanılarak yapılmış elde edilen sonuçlar santrifüj deney sonucu ile kontrol edilmiştir.

References

  • Abdoun, T., and Wang, Y., 2003. Performance of retrofitted pile foundations subjected to seismically induced lateral spreading. Pacific Conference on Earthquake Engineering, University of Canterbury, Christchurch, New Zealand.
  • Abdoun, T., Dobry, R., Zimmie, T.F., and Zeghal, M., 2005. Centrifuge research of countermeasures to protect pile foundations against liquefaction-induced Lateral Spreading. Journal of Earthquake Engineering, 9(1), 105-125.
  • Arulmoli, K., Muraleetharan, K.K., Hossain, M.M. and Fruth, L.S., 1992. VELACS: Verification of liquefaction analyses by centrifuge studies, laboratory testing program. Soil Data Report, Irvine, California Report-Project, California, 90-0562.
  • Berril, J.B., Christensen, S.A., Keenan, R.P, Okada, W., and Pettinga, J.R., 2001. Studies of LAteral Spreading Forces on a Piled Foundation” Geotechique 51(6), 501-517.
  • Bhattacharya, S., Tokimatsu, K., Goda, K., Sarkar, R., Shadlou, M., and Rouholamin, M., 2014. Collapse of Showa Bridge during 1964 Niigata earthquake: A quantitative reappraisal on the failure mechanisms. Soil Dynamics and Earthquake Engineering, 65, 55-71.
  • Boulanger, R.W., Curras. C.J., Kutter, B.L., Wilson, B.W., and Abghari, A., 1998. Seismic soil-pile-structure interaction experiments and analyses. Journal of Geotechnical and Geoenvironmental Engineering, 125(9), 750-759.
  • Brandenberg, S.J., Boulanger, R.W., Kutter B.L., and Chang, D., 2005. Behavior of pile foundations in laterally spreading ground during centrifuge tests. Journal of Geotechnical and Geoenvironmental Engineering, 131(11), 1378-1391.
  • Byrne, P.M., 1991. A Cyclic Shear-Volume Coupling and Pore-Pressure Model for Sand. In Proceedings 2nd International Conference on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics, Saint. Louis, Missouri, 47-55.
  • Chang, D., Boulanger, R.W., Kutter, B.L., and Brandenberg, S.J., 2005. Experimental Observations of Inertial and Lateral Spreading Loads on Pile Groups during Earthquakes. Geo-Frontiers Congress, Austin, Texas, United States.
  • Cubrinovski, M., Ishihara, K.and Furukawazono, K., 1999. Analysis of Full-Scale Tests on Piles in Deposits Subjected to Liquefaction. 2nd International Conference on Earthquake Geotechnical Engineering, Lisbon, Portugal.
  • Cubrinovski, M., Kokusho, , T., and Ishihara, K., 2006. Interpretation from large-scale table tests on piles undergoing lateral spreading in liquefied soils. Soil Dynamics and Earthquake Engineering, 26(2-4), 275-286.
  • Dobry, R., and Liu, L., 1994. Centrifuge Modelling of Soil Liquefaction. Earthquake Engineering 10. World Conference, Rotterdam, 6801-6809.
  • Dobry, R., Abdoun, T., O'Rourke, T. D., and Goh, S.H., 2003. Single piles in lateral spreads: Field bending moment evaluation. Journal of Geotechnical and Geoenvironmental Engineering, 129(10), 879-889.
  • Finn, W.D.L., and Fujita, N., 2002. Piles in liquefiable soils: seismic analysis and design issues. Soil Dynamics and Earthquake Engineering, 22(9-12), 731-742.
  • FLAC2D- Fast Lagrangian Analysis of Continua User Guide, Dynamic Analysis, 2002.
  • FLAC2D, Software program, Version 6, Itasca Consulting.
  • Haldar, S., and Babu, G.L.S., 2010. Failure mechanisms of pile foundations in liquefiable soil: parametric study. International Journal of Geomechanics, 10(2), 74-84.
  • Heidary-Torkamani, H., Bargi, K., Amirabadi, R., and McCllough, J.N., 2014. Fragility estimation and sensitivity analysis of an idealized pile-supported wharf with batter piles. Soil Dynamics and Earthquake Engineering, 61-62, 92–106.
  • İnternet: Tyagi, W., 2015. Numerical methods in geotechnical engineering (2)-finite difference method. URL: http://www.webcitation.org/query?url=https%3A%2F%2Fgeosynthetic.wordpress.com%2F2015%2F10%2F16%2Fnumerical-methods-in-geotechnical-engineering-2-finite-difference-method%2F++&date=2018-02-21, Last Access Date: 20.09.2017.
  • Ishihara, K., and Cubrinovski, M., 1998. Performance of large-diameter piles subjected to lateral spreading of liquefied deposits. 13th Southeast Asian Geotechnical Conference, Taipei.
  • Liyanapathirana, D.S., and Poulos, H.G., 2002. A numerical model for dynamic soil liquefaction analysis. Soil Dynamics and Earthquake Engineering, 22(9-12), 1007-1015.
  • Liyanapathirana, D.S., and Poulos, H.G., 2003. A pseudo-static approach for seismic analysis of piles ın liquefying soil. Journal of Geotechnical and Geoenvironmental Engineering, 131(12), 1480-1487.
  • Madabhushi, G., Knappett, J., and Haigh S., 2010. Design of Pile Foundations In Liquefiable Soils '' Imperial College Press.
  • Martin, G.R., and Chen, C.Y., 2005. Response of piles due to lateral slope movement. Computers and Structures, 83(8-9), 588-598.
  • Mazak, E., 2016. Kazık davranışının iki ve üç boyutlu olarak araştırılması, Yüksek Lisans Tezi, Kocaeli Üniversitesi Fen Bilimleri Enstitüsü, Kocaeli.(In Turkish)
  • Rollins, K.M., Gerber, T.M., Lane, J.D., and Ashford, S.A., 2005. Lateral resistance of a full-scale pile group in liquefied sand. Journal of the Geotechnical and Geoenvironmental Engineering Division, 131(1), 115-125.
  • Takahashi, A., and Takemura, J., 2005. Liquefaction-induced large displacement of the pile-suppored wharf. Soil Dynamics and Earthquake Engineering, 25(11), 811-825.
  • Tokimatsu, K., and Asaka, Y., 1998. Effects of liquefaction-induced ground displacements on pile performance in the 1995 Hyogoken-Nambu earthquake. Special Issue of Soil and Foundations, 38, 163-177.
  • Wilson, D.W., Boulanger, R.W., and Kutter, B.L., 2000. Observed seismic lateral resistance of liquefying sand. Journal of Geotechnical and Geoenvironmental Engineering, 126(10), 898-906.
  • Yoshida, N., Tazoh, T., Wakamatsu, K., Yasuda, S., Towahata, I., Nakazawa, H., and Kiku, H., 2007.Causes of Showa Bridge collapse in the 1964 Niigata earthquake based on eyewitness testimony. Soils Foundation, 47 (6), pp. 1075-1087.
There are 30 citations in total.

Details

Primary Language English
Subjects Civil Engineering
Journal Section Research Articles
Authors

Pınar Öztürk Kardoğan 0000-0002-5212-4318

Nihat Işık 0000-0002-5104-9504

Publication Date September 24, 2020
Submission Date April 10, 2020
Acceptance Date September 1, 2020
Published in Issue Year 2020 Volume: 8 Issue: 3

Cite

APA Öztürk Kardoğan, P., & Işık, N. (2020). A VERIFICATION ANALYSIS FOR PILES IN LIQUEFIABLE SOIL. Mühendislik Bilimleri Ve Tasarım Dergisi, 8(3), 712-719. https://doi.org/10.21923/jesd.718144