SULU ÇÖZELTİLERDEN AKTİF KARBON ÜZERİNE ADSORPSİYON İLE ANTİBİYOTİKLERİN (TETRASİKLİN VE PENİSİLİN G) GİDERİMİ
Year 2020,
Volume: 8 Issue: 3, 943 - 951, 24.09.2020
Aydın Türkyılmaz
,
Kaan Işınkaralar
Abstract
Selülozik yapıdaki bir atık olan yer fıstığı kabuğundan aktif karbon elde ederek ekonomiye kazandırılması ve hem karasal hem de sucul ekosistemlerde önemli bir kirletici olan antibiyotiklerin aktif karbon üzerine adsorpsiyonu ile giderimi çalışılmıştır. Bu çalışmada aktif karbon üzerine farklı derişimlerdeki sulu çözeltilerden farklı koşullarda antibiyotiklerin (Tetrasiklin Ve Penisilin G) adsorpsiyonu yapılmıştır. Adsorbentin karakteristik özellikleri ve yüzey yapısı SEM EDX, BET ve elementel analiz ile karakterize edilmiştir. Elde edilen aktif karbonun BET yüzey alanı 308.6 m2/g, toplam gözenek hacmi 0,13 cm3/g ve toplam mikro gözenek hacmi ise 0,09 cm3/g olarak bulunmuştur. Antibiyotik olarak seçilen penisilin G’nin 25-40-60oC de ve 3-5-8 pH değerlerinde, tetrasiklinin 30-40-60oC de ve 3-7-9 pH değerlerinde giderim çalışmaları yapılmıştır. Deneysel veriler Langmuir ve Freundlich izotermleri kullanılarak analiz ve korelasyon değerleri incelendiğinde Freundlich izotermi ile daha uyumlu olduğu bulunmuştur. Gerçekleştirilen adsorpsiyonunun fiziksel olarak adsorbe olduğu görülmüştür. Aktif karbonların antibiyotik gideriminde kullanılması kirliliğin azaltılmasında etkili olduğu belirlenmiştir.
Supporting Institution
kastamonu üniversitesi Bap
Project Number
KÜBAP-01/2018-20
Thanks
Bu çalışma Kastamonu Üniversitesi Bilimsel Araştırma Projeleri Koordinasyon Birimi tarafından KÜBAP-01/2018-20 nolu proje kapsamında desteklenmiştir.
References
- Adams, C., Wang, Y., Loftin, K., & Meyer, M., 2002. Removal of antibiotics from surface and distilled water in conventional water treatment processes. Journal of Environmental Engineering, 128(3), 253-260.
- Brown, K. D., Kulis, J., Thomson, B., Chapman, T. H., & Mawhinney, D. B. , 2006. Occurrence of antibiotics in hospital, residential, and dairy effluent, municipal wastewater, and the Rio Grande in New Mexico. Science of the Total Environment, 366(2-3), 772-783.
- Costanzo, S. D., Murby, J., & Bates, J., 2005. Ecosystem response to antibiotics entering the aquatic environment. Marine Pollution Bulletin, 51(1-4), 218-223.
- Cuerda-Correa, E. M., Domínguez-Vargas, J. R., Olivares-Marín, F. J., & de Heredia, J. B., 2010. On the use of carbon blacks as potential low-cost adsorbents for the removal of non-steroidal anti-inflammatory drugs from river water. Journal of Hazardous Materials, 177(1-3), 1046-1053.
- Çelebi, H., Gök, O. Evaluation of Lead Adsorption Kinetics and Isotherms from Aqueous Solution Using Natural Walnut Shell. Int International Journal of Environmental Research 11, 83–90 (2017).
- Dias, J. M., Alvim-Ferraz, M. C., Almeida, M. F., Rivera-Utrilla, J., & Sánchez-Polo, M., 2007. Waste materials for activated carbon preparation and its use in aqueous-phase treatment: a review. Journal of Environmental Management, 85(4), 833-846.
- Genç, N., & Dogan, E. C., 2015. Adsorption kinetics of the antibiotic ciprofloxacin on bentonite, activated carbon, zeolite, and pumice. Desalination and Water Treatment, 53(3), 785-793.
- Hesas, R. H., Daud, W. M. A. W., Sahu, J. N., & Arami-Niya, A., 2013. The effects of a microwave heating method on the production of activated carbon from agricultural waste: A review. Journal of Analytical and Applied pyrolysis, 100, 1-11.
- Hung, Y. T., Lo, H. H., Wang, L. K., Taricska, J. R., & Li, K. H.,2005. Granular activated carbon adsorption. In Physicochemical Treatment Processes (pp. 573-633). Humana Press.
- Jung, C., Boateng, L. K., Flora, J. R., Oh, J., Braswell, M. C., Son, A., & Yoon, Y., 2015. Competitive adsorption of selected non-steroidal anti-inflammatory drugs on activated biochars: experimental and molecular modeling study. Chemical Engineering Journal, 264, 1-9.
- Kamranifar, M., Allahresani, A., & Naghizadeh, A., 2019. Synthesis and characterizations of a novel CoFe2O4@ CuS magnetic nanocomposite and investigation of its efficiency for photocatalytic degradation of penicillin G antibiotic in simulated wastewater. Journal of hazardous materials, 366, 545-555.
- Kinniburgh, D. G.,1986. General purpose adsorption isotherms. Environmental Science & Technology, 20(9), 895-904.
- Li, C., Zhu, X., He, H., Fang, Y., Dong, H., Lü, J., ... & Li, Y., 2019. Adsorption of two antibiotics on biochar prepared in air-containing atmosphere: influence of biochar porosity and molecular size of antibiotics. Journal of Molecular Liquids, 274, 353-361.
- Ocampo-Pérez, R., Leyva-Ramos, R., Rivera-Utrilla, J., Flores-Cano, J. V., & Sánchez-Polo, M., 2015. Modeling adsorption rate of tetracyclines on activated carbons from aqueous phase. Chemical Engineering Research and Design, 104, 579-588.
- Özalp, B., Türkiye'de yer fıstığı sektörünün değer zinciri analizi, 2019 Doktora Tezi, Çukurova Üniversitesi.
- Özcan, S., Çelebi, H., & Özcan, Z. 2018. Removal of heavy metals from simulated water by using eggshell powder. Desalination and Water Treatment, 127, 75-82.
- Suriyanon, N., Permrungruang, J., Kaosaiphun, J., Wongrueng, A., Ngamcharussrivichai, C., & Punyapalakul, P., 2015. Selective adsorption mechanisms of antilipidemic and non-steroidal anti-inflammatory drug residues on functionalized silica-based porous materials in a mixed solute. Chemosphere, 136, 222-231.
- Wang, Q. J., Mo, C. H., Li, Y. W., Gao, P., Tai, Y. P., Zhang, Y., ... & Xu, J. W., 2010. Determination of four fluoroquinolone antibiotics in tap water in Guangzhou and Macao. Environmental Pollution,158(7), 2350-2358.3
- Weltzien, H. U., & Padovan, E., 1998. Molecular features of penicillin allergy. Journal of Investigative Dermatology, 110(3), 203-206.
- Ye, Z., Weinberg, H. S., & Meyer, M. T., 2007. Trace analysis of trimethoprim and sulfonamide, macrolide, quinolone, and tetracycline antibiotics in chlorinated drinking water using liquid chromatography electrospray tandem mass spectrometry. Analytical Chemistry, 79(3), 1135-1144.
- Zhang, X., Guo, W., Ngo, H. H., Wen, H., Li, N., & Wu, W., 2016. Performance evaluation of powdered activated carbon for removing 28 types of antibiotics from water. Journal of Environmental Management, 172, 19
REMOVAL OF ANTIBIOTICS (TETRACYCLINE AND PENICILLIN G) FROM WATER SOLUTIONS BY ADSORPTION ON ACTIVATED CARBON
Year 2020,
Volume: 8 Issue: 3, 943 - 951, 24.09.2020
Aydın Türkyılmaz
,
Kaan Işınkaralar
Abstract
It was studied to obtain active carbon from peanut shell, which is a cellulosic waste, to bring it to the economy and to remove it by adsorption of antibiotics, which are an important pollutant in both terrestrial and aquatic ecosystems, on activated carbon. In this study, antibiotics (Tetracycline and Penicillin G) adsorption were done on activated carbon under different conditions than aqueous solutions of different concentrations. The characteristic features and surface structure of the adsorbent are characterized by SEM EDX, BET and elemental analysis. The BET surface area of the activated carbon obtained was found to be 308.6 m2/g, the total pore volume was 0.13 cm3/g and the total micropore volume was 0.09 cm3/g. Removal studies have been carried out 30-40-60 oC and at pH values of 3-5-8 for Penicillin G, 30-40-60 oC and pH values of 3-7-9 for Tetracycline. When the analysis and correlation values were examined by using experimental data Langmuir and Freundlich isotherms, adsorption isotherm was found to be more compatible with Freundlich isotherm. It was found that the adsorption performed was physically adsorbed. It has been determined that the use of activated carbons in antibiotics removal is effective in reducing pollution.
Project Number
KÜBAP-01/2018-20
References
- Adams, C., Wang, Y., Loftin, K., & Meyer, M., 2002. Removal of antibiotics from surface and distilled water in conventional water treatment processes. Journal of Environmental Engineering, 128(3), 253-260.
- Brown, K. D., Kulis, J., Thomson, B., Chapman, T. H., & Mawhinney, D. B. , 2006. Occurrence of antibiotics in hospital, residential, and dairy effluent, municipal wastewater, and the Rio Grande in New Mexico. Science of the Total Environment, 366(2-3), 772-783.
- Costanzo, S. D., Murby, J., & Bates, J., 2005. Ecosystem response to antibiotics entering the aquatic environment. Marine Pollution Bulletin, 51(1-4), 218-223.
- Cuerda-Correa, E. M., Domínguez-Vargas, J. R., Olivares-Marín, F. J., & de Heredia, J. B., 2010. On the use of carbon blacks as potential low-cost adsorbents for the removal of non-steroidal anti-inflammatory drugs from river water. Journal of Hazardous Materials, 177(1-3), 1046-1053.
- Çelebi, H., Gök, O. Evaluation of Lead Adsorption Kinetics and Isotherms from Aqueous Solution Using Natural Walnut Shell. Int International Journal of Environmental Research 11, 83–90 (2017).
- Dias, J. M., Alvim-Ferraz, M. C., Almeida, M. F., Rivera-Utrilla, J., & Sánchez-Polo, M., 2007. Waste materials for activated carbon preparation and its use in aqueous-phase treatment: a review. Journal of Environmental Management, 85(4), 833-846.
- Genç, N., & Dogan, E. C., 2015. Adsorption kinetics of the antibiotic ciprofloxacin on bentonite, activated carbon, zeolite, and pumice. Desalination and Water Treatment, 53(3), 785-793.
- Hesas, R. H., Daud, W. M. A. W., Sahu, J. N., & Arami-Niya, A., 2013. The effects of a microwave heating method on the production of activated carbon from agricultural waste: A review. Journal of Analytical and Applied pyrolysis, 100, 1-11.
- Hung, Y. T., Lo, H. H., Wang, L. K., Taricska, J. R., & Li, K. H.,2005. Granular activated carbon adsorption. In Physicochemical Treatment Processes (pp. 573-633). Humana Press.
- Jung, C., Boateng, L. K., Flora, J. R., Oh, J., Braswell, M. C., Son, A., & Yoon, Y., 2015. Competitive adsorption of selected non-steroidal anti-inflammatory drugs on activated biochars: experimental and molecular modeling study. Chemical Engineering Journal, 264, 1-9.
- Kamranifar, M., Allahresani, A., & Naghizadeh, A., 2019. Synthesis and characterizations of a novel CoFe2O4@ CuS magnetic nanocomposite and investigation of its efficiency for photocatalytic degradation of penicillin G antibiotic in simulated wastewater. Journal of hazardous materials, 366, 545-555.
- Kinniburgh, D. G.,1986. General purpose adsorption isotherms. Environmental Science & Technology, 20(9), 895-904.
- Li, C., Zhu, X., He, H., Fang, Y., Dong, H., Lü, J., ... & Li, Y., 2019. Adsorption of two antibiotics on biochar prepared in air-containing atmosphere: influence of biochar porosity and molecular size of antibiotics. Journal of Molecular Liquids, 274, 353-361.
- Ocampo-Pérez, R., Leyva-Ramos, R., Rivera-Utrilla, J., Flores-Cano, J. V., & Sánchez-Polo, M., 2015. Modeling adsorption rate of tetracyclines on activated carbons from aqueous phase. Chemical Engineering Research and Design, 104, 579-588.
- Özalp, B., Türkiye'de yer fıstığı sektörünün değer zinciri analizi, 2019 Doktora Tezi, Çukurova Üniversitesi.
- Özcan, S., Çelebi, H., & Özcan, Z. 2018. Removal of heavy metals from simulated water by using eggshell powder. Desalination and Water Treatment, 127, 75-82.
- Suriyanon, N., Permrungruang, J., Kaosaiphun, J., Wongrueng, A., Ngamcharussrivichai, C., & Punyapalakul, P., 2015. Selective adsorption mechanisms of antilipidemic and non-steroidal anti-inflammatory drug residues on functionalized silica-based porous materials in a mixed solute. Chemosphere, 136, 222-231.
- Wang, Q. J., Mo, C. H., Li, Y. W., Gao, P., Tai, Y. P., Zhang, Y., ... & Xu, J. W., 2010. Determination of four fluoroquinolone antibiotics in tap water in Guangzhou and Macao. Environmental Pollution,158(7), 2350-2358.3
- Weltzien, H. U., & Padovan, E., 1998. Molecular features of penicillin allergy. Journal of Investigative Dermatology, 110(3), 203-206.
- Ye, Z., Weinberg, H. S., & Meyer, M. T., 2007. Trace analysis of trimethoprim and sulfonamide, macrolide, quinolone, and tetracycline antibiotics in chlorinated drinking water using liquid chromatography electrospray tandem mass spectrometry. Analytical Chemistry, 79(3), 1135-1144.
- Zhang, X., Guo, W., Ngo, H. H., Wen, H., Li, N., & Wu, W., 2016. Performance evaluation of powdered activated carbon for removing 28 types of antibiotics from water. Journal of Environmental Management, 172, 19