Research Article
BibTex RIS Cite

GALYUM KATKILI ÇİNKO OKSİT NANOANTEN İLE MİKROLENS

Year 2020, Volume: 8 Issue: 3, 931 - 942, 24.09.2020
https://doi.org/10.21923/jesd.784056

Abstract

Alternatif plazmonik temelli fraktal metalensler araştırılmıştır. Bu bağlamda,
1550 nm iletişim dalga boyu için, konformal Talbot etkisi ile işlevselleştirilmiş galyum katkılı çinko oksit Sierpinski halısı tabanlı fraktal yapının mercekleme performansı analiz edilmiştir. Bu 2D sonlu boyutlu ve iki yinelemeli fraktal kafes sisteminden kırınım yoluyla odaklanma, nümerik olarak gösterilmiştir. Bu bakımdan odaklama performans parametreleri, geometrik parametre taramasına ve fraktal yinelemesine dayanarak zamanda sonlu farklar alanında simülasyonlar aracılığıyla incelenmiştir. Odaklanma verimliliği > 50%, mutlak verimlilik >% 18 ve birincil spot boyutundan daha büyük odak derinliği tüm nümerik numuneler tarafından sunulmuştur. Dahası, bu yeni alternatif plazmonik yapı tarafından konformal Talbot etkisi sergilenmektedir. Optiğe yeni uyarlanmış bir fraktal tasarım ile alternatif plazmoniklere dayanan yeni bir perspektif önerilmiştir. Böylelikle, bu fraktal mikrolens, ışık yakalama toleransı ve düşük maliyet için, konformal dönüşüm optik cihazı olarak hareket eden yeni bir düzlemselleştirilmiş odaklama platformu olarak sunulmuştur.

Supporting Institution

Hatay Mustafa Kemal Üniversitesi BAP Koordinasyon Birimi

Project Number

20.M.036

References

  • Aieta, F., Genevet, P., Kats, M. A., Yu, N., Blanchard, R., Gaburro, Z., Capasso, F., 2012. Aberration-Free Ultrathin Flat Lenses and Axicons at Telecom Wavelengths Based on Plasmonic Metasurfaces. Nano Letters, 12, 9, 4932-4936.
  • Arbabi, E., Arbabi, A., Kamali, S., Horie, Y., Faraon, A., 2016. Multiwavelength polarization-insensitive lenses based on dielectric metasurfaces with meta-molecules. Optica, 3, 628-633.
  • Arbabi, A., Horie, Y., Ball, A. J., Bagheri, M., Faraon, A., 2015. Subwavelength-thick lenses with high numerical apertures and large efficiency based on high-contrast transmitarrays. Nature Communications, 6, 7069.
  • Aouani, H., Rahmani, M., Torres, V., Hegnerova, K., Beruete, M., Homola, J., Hong, M., Navarro-Cía, M., Maier, S. A., 2013. Plasmonic Nanoantennas for Multispectral Surface-Enhanced Spectroscopies. The Journal of Physical Chemistry C, 117, 18620-18626.
  • Aslan, E., Aslan, E., Saracoglu, O. G., Turkmen, M., 2019. An effective triple-band enhanced-infrared-absorption detection by honeycomb-shaped metamaterial-plasmonic absorber. Sensors and Actuators A: Physical, 288, 149-155.
  • Aslan, E., Aslan, E., Turkmen, M., Saracoglu, O. G., 2017. Metamaterial plasmonic absorber for reducing the spectral shift between near- and far-field responses in surface-enhanced spectroscopy applications. Sensors and Actuators A: Physical, 267, 60-69.
  • Aslan, E., Aslan, E., Wang, R., Hong, M.K., Erramilli, S., Turkmen, M., Saracoglu, O.G., Dal Negro, L., 2016. Multispectral Cesaro-Type Fractal Plasmonic Nanoantennas. ACS Photonics, 3, 11, 2102-2111.
  • Aslan, E., Kaya, S., Aslan, E., Korkmaz, S., Saracoglu, O. G., Turkmen, M., 2017. Polarization insensitive plasmonic perfect absorber with coupled antisymmetric nanorod array. Sensors and Actuators B: Chemical, 243, 617-625.
  • Barnes, W. L., 2006. Surface plasmon–polariton length scales: a route to sub-wavelength optics. Journal of Optics A: Pure and Applied Optics, 8, S87–S93.
  • Berini, P., 2014. Surface plasmon photodetectors and their applications. Laser & Photonics Reviews, 8, 197−220.
  • Byrnes, S., Lenef, A., Aieta, F., Capasso, F., 2016. Designing large, high-efficiency, high-numerical-aperture, transmissive meta-lenses for visible light. Optics Express, 24, 5110-5124.
  • Dennis, M., Zheludev, N., Javier García de Abajo, F., 2007. The plasmon Talbot effect. Optics Express, 15, 9692-9700.
  • Gao, H., Hyun, J. K., Lee, M. H., Yang, J.-C., Lauhon, L. J., Odom, T. W., 2010. Broadband Plasmonic Microlenses Based on Patches of Nanoholes. Nano Letters, 10, 4111-4116.
  • Gao, X.-Z., Pan, Y., Zhao, M.-D., Zhang, G.-L., Zhang, Y., Tu, C., Li, Y., Wang, H.-T., 2018. Focusing behavior of the fractal vector optical fields designed by fractal lattice growth model. Optics Express, 26, 1597-1614.
  • Gottheim, S., Zhang, H., Govorov, A. O., Halas, N. J., 2015. Fractal Nanoparticle Plasmonics: The Cayley Tree. ACS Nano, 9, 3284−3292.
  • Hua, Y., Suh, J., Zhou, W., Huntington, M., Odom, T., 2012. Talbot effect beyond the paraxial limit at optical frequencies. Optics Express, 20, 14284-14291.
  • Khorasaninejad, M., Chen, W.T., Devlin, R.C., Oh, J., Zhu, A.Y., Capasso, F., 2016. Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging. Science, 352, 1190-1194.
  • Kim, Jo., Naik, G. V., Emani, N. K., Guler, U., Boltasseva, A., 2013. Plasmonic Resonances in Nanostructured Transparent Conducting Oxide Films. IEEE Journal of Selected Topics in Quantum Electronics, 19, 4601907.
  • Lalanne, P., Chavel, P., 2017. Metalenses at visible wavelengths: past, present, perspectives. Laser & Photonics Reviews, 11, 1600295.
  • Li, B., Piyawattanametha, W., Qiu, Z., 2019.Metalens-Based Miniaturized Optical Systems. Micromachines, 10, 310.
  • Li, L., Fu, Y., Wu, H., Zheng, L., Zhang, H., Lu, Z., Sun, Q., Yu, W., 2011. The Talbot effect of plasmonic nanolenses. Optics Express, 19, 19365-19373.
  • Li, W., Li, H., Gao, B., Yu, Y., 2017. Investigation on the plasmon Talbot effect of finite-sized periodic arrays of metallic nanoapertures. Scientific Reports, 7, 45573.
  • Liu, K., Li, N., Sadana, D. K., Sorger, V. J., 2016. Integrated Nanocavity Plasmon Light Sources for On-Chip Optical Interconnects. ACS Photonics, 3, 233-242.
  • MacDonald, K. F., Samson, Z. L., Stockman, M. I., Zheludev, N. ́I., 2009. Ultrafast active plasmonics. Nature Photonics, 3, 55−58.
  • Mandelbrot, B.B., 1982. The Farctal Geometry of Nature, W. H. Freeman and Company.
  • Mehdi, A.-B., Luo, X.-P., Li, C.-B., Feng, S., Dong, M., Zhu, L.-Q., 2018a. The Observation of Plasmonic Talbot Effect at Non-Illumination Side of Groove Arrays. Plasmonics, 13, 2387–2394.
  • Mehdi, A.-B., Lou, X.-P., Dong, M.-L., Li, C.-B., Feng, S., Saviz, P., Zhu, L.-Q., 2018b. Geometrical condition for observing Talbot effect in plasmonics infinite metallic groove arrays. Chinese Physics B, 27, 124204.
  • Minovich, A. E., Miroshnichenko, A.E., Bykov, A.Y., Murzina, T.V., Neshev, D.N., Kivshar, Y.S., 2015. Functional and nonlinear optical metasurfaces. Laser & Photonics Reviews, 9, 195-213.
  • Naik, G. V., Shalaev, V. M., Boltasseva, A., 2013. Alternative Plasmonic Materials: Beyond Gold and Silver. Advanced Materials. 2013, 25, 3264-3294.
  • Rayleigh, L.,1881. XXV. On copying diffraction-gratings, and on some phenomena connected therewith, The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 11(67), 196-205.
  • Rosa, L., Sun, K., Juodkazis, S., 2011. Sierpin´ski fractal plasmonic nanoantennas. Physica Status Solidi RRL, 5−6, 175−177.
  • Talbot, H.F., 1836. LXXVI. Facts relating to optical science. No. IV, The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 9(56), 401-407.
  • Tanriover, I., Demir, H. V., 2019. Broad-band polarization-insensitive all-dielectric metalens enabled by intentional off-resonance waveguiding at mid-wave infrared. Applied Physics Letters, 114, 043105.
  • Vogt M. R., 2015. PhD. Thesis, Gottfried Wilhelm Leibniz Universität Hannover.
  • Volpe, G.; Volpe, G.; Quidant, R., 2011. Fractal Plasmonics: Subdiffraction Focusing and Broadband Spectral Response by a Sierpinski Nanocarpet. Optics Express, 19, 3612-3618.
  • Wang, E.-W., Li, L.-L., Yu, W.-X., Wang, T.-S., Gao, J.-S., Fu, Y.-Q., Liu, Y.-L., 2013. The Focusing Property of Immersed Plasmonic Nanolenses Under Radially Polarized Illumination. IEEE Photonics Journal, 4500207.
  • Wen, J., Zhang, Y., Xiao, M., M. 2013. The Talbot effect: recent advances in classical optics, nonlinear optics, and quantum optics. Advances in Optics and Photonics, 5, 83-130.
  • Xia, T., Cheng, S., Tao, S., 2019. A general n-fractal aperiodic zone plate. Journal of Modern Optics, 66 (11), 1179–1189.
  • Yang, Y., Dai, H. T., Sun, X. W., 2014. Fractal diabolo antenna for enhancing and confining the optical magnetic field. AIP Advances, 4, 017123.
  • Yu, N., Capasso, F., Flat optics with designer metasurfaces. Nature Materials, 13, 139–150.
  • Yu, Y., Chassaing, D., Scherer, T., Landenberger, B., Zappe, H., 2013. The Focusing and Talbot Effect of Periodic Arrays of Metallic Nanoapertures in High-Index Medium. Plasmonics 2013, 8, 723-732.
  • Zang, H.P., Zheng, C.L., Ji, Z.W., Fan, Q.P., Wei, L., Li, Y.J., Mu, K.J., Chen, S., Wang, C. K., Zhu, X.L., 2019. Characterization of focusing performance of spiral zone plates with fractal structure. Chinese Physics B, 28, (6) 064201.
  • Zhang, L., Mei, S., Huang, K., Qiu, C.W., 2016. Advances in Full Control of Electromagnetic Waves with Metasurfaces. Advanced Optical Materials, 4, 818-833.
  • Zhang, W., Zhao, C., Wang, J., Zhang, J., 2009. An experimental study of the plasmonic Talbot effect. Optics Express, 17, 19757-19762.

A MICROLENS BY GALLIUM DOPED ZINC OXIDE-NANOANTENNA

Year 2020, Volume: 8 Issue: 3, 931 - 942, 24.09.2020
https://doi.org/10.21923/jesd.784056

Abstract

Alternative plasmonics based fractal microlens are investigated. In this context, lensing performance of gallium-doped zinc oxide Sierpinski carpet-based fractal construction functionalized by conformal Talbot effect is analyzed for communication wavelength 1550 nm. Focusing via diffraction from these 2D finite-sized and two-iterated fractal lattice system is computationally demonstrated. In this regard, focusing performance parameters are computationally examined on the basis of geometrical parameter sweep and fractal generation via finite difference time-domain numerical simulations. Focusing efficiency > 50%, absolute
efficiency > 18%, and focal depth larger than primary spot size are introduced by all computational samples. Moreover, a conformal Talbot effect is exhibited by this novel alternative plasmonics construction. A novel perspective based on alternative plasmonics by a newly adapted fractal design to optics is proposed. Thus, this fractal microlens is presented as a new planarized focusing platform, acting a conformal transformation optics device for light capturing tolerance and low-cost.

Project Number

20.M.036

References

  • Aieta, F., Genevet, P., Kats, M. A., Yu, N., Blanchard, R., Gaburro, Z., Capasso, F., 2012. Aberration-Free Ultrathin Flat Lenses and Axicons at Telecom Wavelengths Based on Plasmonic Metasurfaces. Nano Letters, 12, 9, 4932-4936.
  • Arbabi, E., Arbabi, A., Kamali, S., Horie, Y., Faraon, A., 2016. Multiwavelength polarization-insensitive lenses based on dielectric metasurfaces with meta-molecules. Optica, 3, 628-633.
  • Arbabi, A., Horie, Y., Ball, A. J., Bagheri, M., Faraon, A., 2015. Subwavelength-thick lenses with high numerical apertures and large efficiency based on high-contrast transmitarrays. Nature Communications, 6, 7069.
  • Aouani, H., Rahmani, M., Torres, V., Hegnerova, K., Beruete, M., Homola, J., Hong, M., Navarro-Cía, M., Maier, S. A., 2013. Plasmonic Nanoantennas for Multispectral Surface-Enhanced Spectroscopies. The Journal of Physical Chemistry C, 117, 18620-18626.
  • Aslan, E., Aslan, E., Saracoglu, O. G., Turkmen, M., 2019. An effective triple-band enhanced-infrared-absorption detection by honeycomb-shaped metamaterial-plasmonic absorber. Sensors and Actuators A: Physical, 288, 149-155.
  • Aslan, E., Aslan, E., Turkmen, M., Saracoglu, O. G., 2017. Metamaterial plasmonic absorber for reducing the spectral shift between near- and far-field responses in surface-enhanced spectroscopy applications. Sensors and Actuators A: Physical, 267, 60-69.
  • Aslan, E., Aslan, E., Wang, R., Hong, M.K., Erramilli, S., Turkmen, M., Saracoglu, O.G., Dal Negro, L., 2016. Multispectral Cesaro-Type Fractal Plasmonic Nanoantennas. ACS Photonics, 3, 11, 2102-2111.
  • Aslan, E., Kaya, S., Aslan, E., Korkmaz, S., Saracoglu, O. G., Turkmen, M., 2017. Polarization insensitive plasmonic perfect absorber with coupled antisymmetric nanorod array. Sensors and Actuators B: Chemical, 243, 617-625.
  • Barnes, W. L., 2006. Surface plasmon–polariton length scales: a route to sub-wavelength optics. Journal of Optics A: Pure and Applied Optics, 8, S87–S93.
  • Berini, P., 2014. Surface plasmon photodetectors and their applications. Laser & Photonics Reviews, 8, 197−220.
  • Byrnes, S., Lenef, A., Aieta, F., Capasso, F., 2016. Designing large, high-efficiency, high-numerical-aperture, transmissive meta-lenses for visible light. Optics Express, 24, 5110-5124.
  • Dennis, M., Zheludev, N., Javier García de Abajo, F., 2007. The plasmon Talbot effect. Optics Express, 15, 9692-9700.
  • Gao, H., Hyun, J. K., Lee, M. H., Yang, J.-C., Lauhon, L. J., Odom, T. W., 2010. Broadband Plasmonic Microlenses Based on Patches of Nanoholes. Nano Letters, 10, 4111-4116.
  • Gao, X.-Z., Pan, Y., Zhao, M.-D., Zhang, G.-L., Zhang, Y., Tu, C., Li, Y., Wang, H.-T., 2018. Focusing behavior of the fractal vector optical fields designed by fractal lattice growth model. Optics Express, 26, 1597-1614.
  • Gottheim, S., Zhang, H., Govorov, A. O., Halas, N. J., 2015. Fractal Nanoparticle Plasmonics: The Cayley Tree. ACS Nano, 9, 3284−3292.
  • Hua, Y., Suh, J., Zhou, W., Huntington, M., Odom, T., 2012. Talbot effect beyond the paraxial limit at optical frequencies. Optics Express, 20, 14284-14291.
  • Khorasaninejad, M., Chen, W.T., Devlin, R.C., Oh, J., Zhu, A.Y., Capasso, F., 2016. Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging. Science, 352, 1190-1194.
  • Kim, Jo., Naik, G. V., Emani, N. K., Guler, U., Boltasseva, A., 2013. Plasmonic Resonances in Nanostructured Transparent Conducting Oxide Films. IEEE Journal of Selected Topics in Quantum Electronics, 19, 4601907.
  • Lalanne, P., Chavel, P., 2017. Metalenses at visible wavelengths: past, present, perspectives. Laser & Photonics Reviews, 11, 1600295.
  • Li, B., Piyawattanametha, W., Qiu, Z., 2019.Metalens-Based Miniaturized Optical Systems. Micromachines, 10, 310.
  • Li, L., Fu, Y., Wu, H., Zheng, L., Zhang, H., Lu, Z., Sun, Q., Yu, W., 2011. The Talbot effect of plasmonic nanolenses. Optics Express, 19, 19365-19373.
  • Li, W., Li, H., Gao, B., Yu, Y., 2017. Investigation on the plasmon Talbot effect of finite-sized periodic arrays of metallic nanoapertures. Scientific Reports, 7, 45573.
  • Liu, K., Li, N., Sadana, D. K., Sorger, V. J., 2016. Integrated Nanocavity Plasmon Light Sources for On-Chip Optical Interconnects. ACS Photonics, 3, 233-242.
  • MacDonald, K. F., Samson, Z. L., Stockman, M. I., Zheludev, N. ́I., 2009. Ultrafast active plasmonics. Nature Photonics, 3, 55−58.
  • Mandelbrot, B.B., 1982. The Farctal Geometry of Nature, W. H. Freeman and Company.
  • Mehdi, A.-B., Luo, X.-P., Li, C.-B., Feng, S., Dong, M., Zhu, L.-Q., 2018a. The Observation of Plasmonic Talbot Effect at Non-Illumination Side of Groove Arrays. Plasmonics, 13, 2387–2394.
  • Mehdi, A.-B., Lou, X.-P., Dong, M.-L., Li, C.-B., Feng, S., Saviz, P., Zhu, L.-Q., 2018b. Geometrical condition for observing Talbot effect in plasmonics infinite metallic groove arrays. Chinese Physics B, 27, 124204.
  • Minovich, A. E., Miroshnichenko, A.E., Bykov, A.Y., Murzina, T.V., Neshev, D.N., Kivshar, Y.S., 2015. Functional and nonlinear optical metasurfaces. Laser & Photonics Reviews, 9, 195-213.
  • Naik, G. V., Shalaev, V. M., Boltasseva, A., 2013. Alternative Plasmonic Materials: Beyond Gold and Silver. Advanced Materials. 2013, 25, 3264-3294.
  • Rayleigh, L.,1881. XXV. On copying diffraction-gratings, and on some phenomena connected therewith, The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 11(67), 196-205.
  • Rosa, L., Sun, K., Juodkazis, S., 2011. Sierpin´ski fractal plasmonic nanoantennas. Physica Status Solidi RRL, 5−6, 175−177.
  • Talbot, H.F., 1836. LXXVI. Facts relating to optical science. No. IV, The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 9(56), 401-407.
  • Tanriover, I., Demir, H. V., 2019. Broad-band polarization-insensitive all-dielectric metalens enabled by intentional off-resonance waveguiding at mid-wave infrared. Applied Physics Letters, 114, 043105.
  • Vogt M. R., 2015. PhD. Thesis, Gottfried Wilhelm Leibniz Universität Hannover.
  • Volpe, G.; Volpe, G.; Quidant, R., 2011. Fractal Plasmonics: Subdiffraction Focusing and Broadband Spectral Response by a Sierpinski Nanocarpet. Optics Express, 19, 3612-3618.
  • Wang, E.-W., Li, L.-L., Yu, W.-X., Wang, T.-S., Gao, J.-S., Fu, Y.-Q., Liu, Y.-L., 2013. The Focusing Property of Immersed Plasmonic Nanolenses Under Radially Polarized Illumination. IEEE Photonics Journal, 4500207.
  • Wen, J., Zhang, Y., Xiao, M., M. 2013. The Talbot effect: recent advances in classical optics, nonlinear optics, and quantum optics. Advances in Optics and Photonics, 5, 83-130.
  • Xia, T., Cheng, S., Tao, S., 2019. A general n-fractal aperiodic zone plate. Journal of Modern Optics, 66 (11), 1179–1189.
  • Yang, Y., Dai, H. T., Sun, X. W., 2014. Fractal diabolo antenna for enhancing and confining the optical magnetic field. AIP Advances, 4, 017123.
  • Yu, N., Capasso, F., Flat optics with designer metasurfaces. Nature Materials, 13, 139–150.
  • Yu, Y., Chassaing, D., Scherer, T., Landenberger, B., Zappe, H., 2013. The Focusing and Talbot Effect of Periodic Arrays of Metallic Nanoapertures in High-Index Medium. Plasmonics 2013, 8, 723-732.
  • Zang, H.P., Zheng, C.L., Ji, Z.W., Fan, Q.P., Wei, L., Li, Y.J., Mu, K.J., Chen, S., Wang, C. K., Zhu, X.L., 2019. Characterization of focusing performance of spiral zone plates with fractal structure. Chinese Physics B, 28, (6) 064201.
  • Zhang, L., Mei, S., Huang, K., Qiu, C.W., 2016. Advances in Full Control of Electromagnetic Waves with Metasurfaces. Advanced Optical Materials, 4, 818-833.
  • Zhang, W., Zhao, C., Wang, J., Zhang, J., 2009. An experimental study of the plasmonic Talbot effect. Optics Express, 17, 19757-19762.
There are 44 citations in total.

Details

Primary Language English
Subjects Electrical Engineering
Journal Section Research Articles
Authors

Ekin Aslan 0000-0003-0933-7796

Erdem Aslan 0000-0001-6829-9000

Project Number 20.M.036
Publication Date September 24, 2020
Submission Date August 22, 2020
Acceptance Date September 17, 2020
Published in Issue Year 2020 Volume: 8 Issue: 3

Cite

APA Aslan, E., & Aslan, E. (2020). A MICROLENS BY GALLIUM DOPED ZINC OXIDE-NANOANTENNA. Mühendislik Bilimleri Ve Tasarım Dergisi, 8(3), 931-942. https://doi.org/10.21923/jesd.784056