Research Article
BibTex RIS Cite

PERFORMANCE ANALYSIS OF AODV BASED ROUTING ALGORITHM INTER WIRELESS BODY AREA NETWORKS

Year 2020, Volume: 8 Issue: 4, 1138 - 1149, 25.12.2020
https://doi.org/10.21923/jesd.723933

Abstract

Vital data such as body temperature, heart rhythm and respiration rate are very important in evaluating human health and intervening immediately in possible problems. Various systems can be used to monitor and evaluate these vital and physical data. Wireless Body Area Networks (WBANs), which are widely used in remote health monitoring systems, have been the subject of applications in many areas such as sports, military and interactive games, particularly health. Especially in more intense environments, the coordinator nodes of individuals carrying WBAN equipment can communicate with each other (inter-WBAN), revealing the importance of routing processes. In this study, WBAN communication network was modeled in Riverbed Modeler simulation software. AODV routing protocol has been used in order to reach the targets of data successfully in inter-WBAN communication. The IEEE 802.15.6 protocol was used for intra-WBAN communication and the end-to-end delay, energy consumption and throughput parameters were analyzed for the performance analysis of the proposed system.

References

  • Abdullah, W. A. N. W., Yaakob, N., Ahmad, R. B., Elobaid, M. E., & Yah, S. A. 2019. Impact of clustering in AODV routing protocol for wireless body area network in remote health monitoring system. Indonesian Journal of Electrical Engineering and Computer Science, 13(2), 689-695
  • Ben Arbia, D., Alam, M. M., Attia, R., & Ben Hamida, E. 2015. Behavior of wireless body-to-body networks routing strategies for public protection and disaster relief 11th International Conference on Wireless and Mobile Computing. Networking and Communications, 117–124.
  • Bingöl, O., Özkaya, B., & Bayram, M. 2018. Wireless Sensor Network Based Remote Drip Irrigation System. Mühendislik Bilimleri ve Tasarım Dergisi, 6(4), 554–563.
  • Bouazizi, A., Zaibi, G., Samet, M., & Kachouri, A. 2017. Wireless body area network for e-health applications. International Conference on Smart, Monitored and Controlled Cities (SM2C), 64–68.
  • Cicioğlu, M., & Çalhan, A. 2019. HUBsFLOW: A novel interface protocol for SDN-enabled WBANs. Computer Networks, 160, 105–117.
  • Cicioğlu, M., & Çalhan, A. 2019. SDN‐based wireless body area network routing algorithm for healthcare architecture. ETRI Journal, 41(4), 452–464
  • Cicioğlu, M., & Çalhan, A. 2019. Performance analysis of IEEE 802.15.6 for underground disaster cases. Computer Standards & Interfaces, 66, 103364.
  • Crossbow Technology. 2008. MICAz: Wireless Measurement System. Product Datasheet. http://www.openautomation.net/uploadsproductos/micaz_datasheet.pdf.
  • Dhurandher, S. K., Misra, S., Obaidat, M. S., Bansal, V., Singh, P. R., & Punia, V. 2009. EEAODR: An energy-efficient ad hoc on-demand routing protocol for mobile ad hoc networks. International Journal of Communication Systems, 22(7), 789–817.
  • Gökcan, S. E., & Kahraman, N. 2019. Robotic Surface Material Recognition System Using Sensor Network. Mühendislik Bilimleri ve Tasarım Dergisi, 7(1), 81–89.
  • He, P., Li, X., Yan, L., Yang, S., & Zhang, B. 2015. Performance analysis of wban based on aodv and dsdv routing protocols. 2nd International Symposium on Future Information and Communication Technologies for Ubiquitous HealthCare (Ubi-HealthTech), 1–4.
  • IEEE Computer Society, & IEEE Standards Association. 2012. IEEE Standard for Local and metropolitan area networks - Part 15.6: Wireless Body Area Networks.
  • Jacob, A. K., Kishore, G. M., & Jacob, L. 2017. Lifetime and latency analysis of IEEE 802.15.6 WBAN with interrupted sleep mechanism. Sadhana - Academy Proceedings in Engineering Sciences, 865-878.
  • Jahir, Y., Atiquzzaman, M., Refai, H., Paranjothi, A., & LoPresti, P. G. 2019. Routing protocols and architecture for Disaster Area Network: A survey. Ad Hoc Networks, 82(1), 1-14.
  • Liu, H., Hu, F., Qu, S., Li, Z., & Li, D. 2019. Multipoint Wireless Information and Power Transfer to Maximize Sum-Throughput in WBAN with Energy Harvesting. IEEE Internet of Things Journal, 6(4), 7069-7078.
  • Loo, J., Mauri, J. L., Ortiz, J. H., & Maltz, D. A. 2016. Mobile Ad Hoc Networks: Current Status and Future Trends. Computer.
  • Luo, X., Liu, L., Shu, J., & Al-Kali, M. 2019. Link Quality Estimation Method for Wireless Sensor Networks Based on Stacked Autoencoder. IEEE Access, 21572-21583.
  • Misra, S., & Dias Thomasinous, P. 2010. A simple, least-time, and energy-efficient routing protocol with one-level data aggregation for wireless sensor networks. Journal of Systems and Software, 852-860.
  • Park, J. 2019. Bio-Inspired Approach for Inter-WBAN Coexistence. IEEE Transactions on Vehicular Technology, 68(7), 7236–7240.
  • Perkins, C. E., & Royer, E. M. 1999. Ad-hoc on-demand distance vector routing. Second IEEE Workshop on Mobile Computing Systems and Applications, 90–100.
  • Qu, Y., Zheng, G., Ma, H., Wang, X., Ji, B., & Wu, H. 2019. A Survey of Routing Protocols in WBAN for Healthcare Applications. Sensors, 19(7), 1638.
  • Riverbed Modeler Software. (2020). Riverbed Technology. https://www.riverbed.com/gb/products/steelcentral/steelcentral-riverbed-modeler.html.
  • Tanrıöven, M. H., & Taşdelen, K. 2020. Establishing a Mesh Network with Bluetooth and Investigating the Range Analysis. Mühendislik Bilimleri ve Tasarım Dergisi, 8(1), 12–19.
  • Yessad, N., Omar, M., Tari, A., & Bouabdallah, A. 2018. QoS-based routing in Wireless Body Area Networks: a survey and taxonomy. Computing, 245-275.
  • Zigbee Specification. 2015. Zigbee Alliance. http://people.ece.cornell.edu/land/courses/ece4760/FinalProjects/s2011/kjb79_ajm232/pmeter/ZigBee Specification.pdf.

KABLOSUZ VÜCUT ALAN AĞLARI ARASI AODV TABANLI YÖNLENDİRME ALGORİTMASININ BAŞARIM ANALİZİ

Year 2020, Volume: 8 Issue: 4, 1138 - 1149, 25.12.2020
https://doi.org/10.21923/jesd.723933

Abstract

Vücut ısısı, kalp ritmi ve solunum oranı gibi hayati veriler insan sağlığının değerlendirilmesi ve olası problemlerde anında müdahale edilebilmesi bakımından oldukça önemlidir. Bu yaşamsal ve fiziksel verilerin izlenmesinde ve değerlendirmesinde çeşitli sistemler kullanılabilmektedir. Uzaktan sağlık izleme sistemlerinde yaygın olarak kullanılan Kablosuz Vücut Alan Ağları (KVAA) başta sağlık olmak üzere sportif, askeri ve etkileşimli oyunlar gibi birçok alanda uygulamalara konu olmuştur. Özellikle daha yoğun ortamlarda KVAA donanımlarını taşıyan bireylerin koordinatör düğümlerinin birbiri ile haberleşebilmesi (KVAA-arası) yönlendirme işlemlerinin önemini ortaya koymuştur. Bu çalışmada Riverbed Modeler benzetim yazılımında KVAA haberleşme ağı modellenmiştir. KVAA’lar arası haberleşmede verilerin hedeflerine başarılı bir şekilde ulaşmaları amacıyla AODV yönlendirme protokolü kullanılmıştır. KVAA-içi haberleşmede ise IEEE 802.15.6 protokolü kullanılmış ve tasarlanan sistemin başarım analizi için uçtan-uça gecikme, enerji tüketimi ve iş çıkarma oranı gibi ağ başarım parametreleri incelenmiştir.

References

  • Abdullah, W. A. N. W., Yaakob, N., Ahmad, R. B., Elobaid, M. E., & Yah, S. A. 2019. Impact of clustering in AODV routing protocol for wireless body area network in remote health monitoring system. Indonesian Journal of Electrical Engineering and Computer Science, 13(2), 689-695
  • Ben Arbia, D., Alam, M. M., Attia, R., & Ben Hamida, E. 2015. Behavior of wireless body-to-body networks routing strategies for public protection and disaster relief 11th International Conference on Wireless and Mobile Computing. Networking and Communications, 117–124.
  • Bingöl, O., Özkaya, B., & Bayram, M. 2018. Wireless Sensor Network Based Remote Drip Irrigation System. Mühendislik Bilimleri ve Tasarım Dergisi, 6(4), 554–563.
  • Bouazizi, A., Zaibi, G., Samet, M., & Kachouri, A. 2017. Wireless body area network for e-health applications. International Conference on Smart, Monitored and Controlled Cities (SM2C), 64–68.
  • Cicioğlu, M., & Çalhan, A. 2019. HUBsFLOW: A novel interface protocol for SDN-enabled WBANs. Computer Networks, 160, 105–117.
  • Cicioğlu, M., & Çalhan, A. 2019. SDN‐based wireless body area network routing algorithm for healthcare architecture. ETRI Journal, 41(4), 452–464
  • Cicioğlu, M., & Çalhan, A. 2019. Performance analysis of IEEE 802.15.6 for underground disaster cases. Computer Standards & Interfaces, 66, 103364.
  • Crossbow Technology. 2008. MICAz: Wireless Measurement System. Product Datasheet. http://www.openautomation.net/uploadsproductos/micaz_datasheet.pdf.
  • Dhurandher, S. K., Misra, S., Obaidat, M. S., Bansal, V., Singh, P. R., & Punia, V. 2009. EEAODR: An energy-efficient ad hoc on-demand routing protocol for mobile ad hoc networks. International Journal of Communication Systems, 22(7), 789–817.
  • Gökcan, S. E., & Kahraman, N. 2019. Robotic Surface Material Recognition System Using Sensor Network. Mühendislik Bilimleri ve Tasarım Dergisi, 7(1), 81–89.
  • He, P., Li, X., Yan, L., Yang, S., & Zhang, B. 2015. Performance analysis of wban based on aodv and dsdv routing protocols. 2nd International Symposium on Future Information and Communication Technologies for Ubiquitous HealthCare (Ubi-HealthTech), 1–4.
  • IEEE Computer Society, & IEEE Standards Association. 2012. IEEE Standard for Local and metropolitan area networks - Part 15.6: Wireless Body Area Networks.
  • Jacob, A. K., Kishore, G. M., & Jacob, L. 2017. Lifetime and latency analysis of IEEE 802.15.6 WBAN with interrupted sleep mechanism. Sadhana - Academy Proceedings in Engineering Sciences, 865-878.
  • Jahir, Y., Atiquzzaman, M., Refai, H., Paranjothi, A., & LoPresti, P. G. 2019. Routing protocols and architecture for Disaster Area Network: A survey. Ad Hoc Networks, 82(1), 1-14.
  • Liu, H., Hu, F., Qu, S., Li, Z., & Li, D. 2019. Multipoint Wireless Information and Power Transfer to Maximize Sum-Throughput in WBAN with Energy Harvesting. IEEE Internet of Things Journal, 6(4), 7069-7078.
  • Loo, J., Mauri, J. L., Ortiz, J. H., & Maltz, D. A. 2016. Mobile Ad Hoc Networks: Current Status and Future Trends. Computer.
  • Luo, X., Liu, L., Shu, J., & Al-Kali, M. 2019. Link Quality Estimation Method for Wireless Sensor Networks Based on Stacked Autoencoder. IEEE Access, 21572-21583.
  • Misra, S., & Dias Thomasinous, P. 2010. A simple, least-time, and energy-efficient routing protocol with one-level data aggregation for wireless sensor networks. Journal of Systems and Software, 852-860.
  • Park, J. 2019. Bio-Inspired Approach for Inter-WBAN Coexistence. IEEE Transactions on Vehicular Technology, 68(7), 7236–7240.
  • Perkins, C. E., & Royer, E. M. 1999. Ad-hoc on-demand distance vector routing. Second IEEE Workshop on Mobile Computing Systems and Applications, 90–100.
  • Qu, Y., Zheng, G., Ma, H., Wang, X., Ji, B., & Wu, H. 2019. A Survey of Routing Protocols in WBAN for Healthcare Applications. Sensors, 19(7), 1638.
  • Riverbed Modeler Software. (2020). Riverbed Technology. https://www.riverbed.com/gb/products/steelcentral/steelcentral-riverbed-modeler.html.
  • Tanrıöven, M. H., & Taşdelen, K. 2020. Establishing a Mesh Network with Bluetooth and Investigating the Range Analysis. Mühendislik Bilimleri ve Tasarım Dergisi, 8(1), 12–19.
  • Yessad, N., Omar, M., Tari, A., & Bouabdallah, A. 2018. QoS-based routing in Wireless Body Area Networks: a survey and taxonomy. Computing, 245-275.
  • Zigbee Specification. 2015. Zigbee Alliance. http://people.ece.cornell.edu/land/courses/ece4760/FinalProjects/s2011/kjb79_ajm232/pmeter/ZigBee Specification.pdf.
There are 25 citations in total.

Details

Primary Language Turkish
Subjects Computer Software
Journal Section Research Articles
Authors

Seda Savaşçı Şen 0000-0001-8569-6454

Murtaza Cicioğlu 0000-0002-5657-7402

Ali Çalhan 0000-0002-5798-3103

Publication Date December 25, 2020
Submission Date April 20, 2020
Acceptance Date November 19, 2020
Published in Issue Year 2020 Volume: 8 Issue: 4

Cite

APA Savaşçı Şen, S., Cicioğlu, M., & Çalhan, A. (2020). KABLOSUZ VÜCUT ALAN AĞLARI ARASI AODV TABANLI YÖNLENDİRME ALGORİTMASININ BAŞARIM ANALİZİ. Mühendislik Bilimleri Ve Tasarım Dergisi, 8(4), 1138-1149. https://doi.org/10.21923/jesd.723933