Research Article
BibTex RIS Cite

COMPRASION OF THE PERFORMANCE OF MULTI-OBJECTIVE META-HEURISTIC OPTIMIZATION ALGORITHMS

Year 2020, Volume: 8 Issue: 5, 185 - 199, 29.12.2020
https://doi.org/10.21923/jesd.828566

Abstract

Project Number

1919B011904092

References

  • Cavus, M., Sezer, A., & Yazici, B. (2015). A simulation study on generalized pareto mixture model. In Computational Problems in Science and Engineering (pp. 249-259). Springer, Cham.
  • Deb, K., & Tiwari, S. (2008). Omni-optimizer: A generic evolutionary algorithm for single and multi-objective optimization. European Journal of Operational Research, 185(3), 1062-1087.
  • Deb, K., Pratap, A., Agarwal, S., & Meyarivan, T. A. M. T. (2002). A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE transactions on evolutionary computation, 6(2), 182-197.
  • Deb, Kalyanmoy, et al. "A fast elitist non-dominated sorting genetic algorithm for multi-objective optimization: NSGA-II." International conference on parallel problem solving from nature. Springer, Berlin, Heidelberg, 2000.
  • E. Zitzler, L. Thiele, M. Laumanns, C.M. Fonseca, V.G.D. Fonseca, Performance assessment of multiobjective optimizers: an analysis and review, IEEE Trans. Evol. Comput. 7 (2) (2003) 117–132.
  • Ibrahim, A. M., Tawhid, M. A., & Ward, R. K. (2020). A binary water wave optimization for feature selection. International Journal of Approximate Reasoning, 120, 74-91.
  • Ishibuchi, H., & Murata, T. (1996, May). Multi-objective genetic local search algorithm. In Proceedings of IEEE international conference on evolutionary computation (pp. 119-124). IEEE.
  • Kahraman, H. T., Aras, S., & Gedikli, E. (2020). Fitness-distance balance (FDB): A new selection method for meta-heuristic search algorithms. Knowledge-Based Systems, 190, 105169.
  • Ke, L., Zhang, Q., & Battiti, R. (2014). Hybridization of decomposition and local search for multiobjective optimization. IEEE transactions on cybernetics, 44(10), 1808-1820.
  • Köse, U. (2017). Yapay zeka tabanlı optimizasyon algoritmaları geliştirilmesi, Doktora Tezi, Selçuk Üniversitesi Fen Bilimleri Enstitüsü.
  • KS, S. R., & Murugan, S. (2017). Memory based hybrid dragonfly algorithm for numerical optimization problems. Expert Systems with Applications, 83, 63-78.
  • Liang, J., Suganthan, P. N., Qu, B. Y., Gong, D. W., Yue, C. T., (2019), Problem Definitions and Evaluation Criteria for the CEC 2020 Special Session on Multimodal Multiobjective Optimization, 201912, Zhengzhou University, doi: 10.13140/RG.2.2.31746.02247.
  • Liu, Y., Ishibuchi, H., Nojima, Y., Masuyama, N., & Shang, K. (2018, September). A double-niched evolutionary algorithm and its behavior on polygon-based problems. In International Conference on Parallel Problem Solving from Nature (pp. 262-273). Springer, Cham.
  • Luo, J., Liu, Q., Yang, Y., Li, X., Chen, M. R., & Cao, W. (2017). An artificial bee colony algorithm for multi-objective optimisation. Applied Soft Computing, 50, 235-251.
  • Mirjalili, S. (2016). Dragonfly algorithm: a new meta-heuristic optimization technique for solving single-objective, discrete, and multi-objective problems. Neural Computing and Applications, 27(4), 1053-1073.
  • Mirjalili, S., Gandomi, A. H., Mirjalili, S. Z., Saremi, S., Faris, H., & Mirjalili, S. M. (2017). Salp Swarm Algorithm: A bio-inspired optimizer for engineering design problems. Advances in Engineering Software, 114, 163-191.
  • Mirjalili, S., Jangir, P., & Saremi, S. (2017). Multi-objective ant lion optimizer: a multi-objective optimization algorithm for solving engineering problems. Applied Intelligence, 46(1), 79-95.
  • Osawa, R., Watanabe, S., Hiroyasu, T., & Hiwa, S. (2019, December). Performance Study of Double-Niched Evolutionary Algorithm on Multi-objective Knapsack Problems. In 2019 IEEE Symposium Series on Computational Intelligence (SSCI) (pp. 1793-1801). IEEE.
  • S. Mirjalili, P. Jangir, S. Z. Mirjalili, S. Saremi, and I. N. Trivedi, Optimization of problems with multiple objectives using the multi-verse optimization algorithm, Knowledge-based Systems, 2017, DOI: http://dx.doi.org/10.1016/j.knosys.2017.07.018
  • Santos, R., Borges, G., Santos, A., Silva, M., Sales, C., & Costa, J. C. (2019). Empirical study on rotation and information exchange in particle swarm optimization. Swarm and Evolutionary Computation, 48, 312-328.
  • Serafini, P. (1994). Simulated annealing for multi objective optimization problems. In Multiple criteria decision making (pp. 283-292). Springer, New York, NY.
  • Yue, C., Qu, B., Yu, K., Liang, J., & Li, X. (2019). A novel scalable test problem suite for multimodal multiobjective optimization. Swarm and Evolutionary Computation, 48, 62-71.
  • Yue, C.T., Liang, J.J., Qu, B.Y., (2018), A multi-objective particle swarm optimizer using ring topology for solving multimodal multi-objective problems. IEEE Trans. Evol. Comput. 22,5, 805-817, https://doi.org/10.1109/tevc.2017.2754271.
  • Zhang, X., Tian, Y., Cheng, R., & Jin, Y. (2014). An efficient approach to nondominated sorting for evolutionary multiobjective optimization. IEEE Transactions on Evolutionary Computation, 19(2), 201-213.
  • Zhou, A., Zhang, Q., & Jin, Y. (2009). Approximating the set of Pareto-optimal solutions in both the decision and objective spaces by an estimation of distribution algorithm. IEEE transactions on evolutionary computation, 13(5), 1167-1189.
  • Zhou, Q. Zhang, Y. Jin, Approximating the set of pareto-optimal solutions in both the decision and objective spaces by an estimation of distribution algorithm, IEEE Trans. Evol. Comput. 13 (5) (2009) 1167–1189.

ÇOK AMAÇLI META-SEZGİSEL OPTİMİZASYON ALGORİTMALARININ PERFORMANSLARININ KARŞILAŞTIRILMASI

Year 2020, Volume: 8 Issue: 5, 185 - 199, 29.12.2020
https://doi.org/10.21923/jesd.828566

Abstract

Çok amaçlı optimizasyon problemlerinin çözümlenmesi tek amaçlı optimizasyon problemlerine kıyasla daha karmaşık süreçlerden oluşmaktadır. Özellikle çok kriterli optimizasyon sürecinde pareto-tabanlı yaklaşımların uygulanması ve meta-sezgisel arama algoritmalarının çok amaçlı optimizasyon problemlerindeki performanslarının ölçülmesi başlıca zorluklardır. Bu iki sebepten dolayı literatürde çok amaçlı problemlerin optimizasyonu amacıyla geliştirilmiş ya da bu amaç için uyarlanmış az sayıda meta-sezgisel optimizasyon algoritması bulunmaktadır. Bu durum çok amaçlı optimizasyon çalışmaları yürüten araştırmacılar açısından da belirsizlikler yaratmaktadır. Bu makale çalışmasında literatürdeki bu belirsizliği gidermeye yönelik çalışmalar yürütülmektedir. İlk olarak çok amaçlı optimizasyon algoritmalarının test edildiği bir platform tasarlanmıştır. Bu platformda algoritmalar, pareto-tabanlı yaklaşımlar, çok-modlu çok-amaçlı test problemleri ve performans metrikleri olmak üzere çok amaçlı optimizasyonun dört temel öğesi modüler yapıda tasarlanmıştır. Geliştirilen platformda çok amaçlı optimizasyon algoritmalarının test edilmeleri için güncel bir karşılaştırma ve test havuzu olan ve CEC 2020 yarışması için hazırlanmış olan çok modlu çok amaçlı optimizasyon problemleri havuzu kullanılmıştır. Deneysel çalışma ayarları ve performans metrikleri CEC 2020 standartları esas alınarak yürütülmüştür. Literatürde yer alan sekiz adet çok amaçlı meta-sezgisel optimizasyon algoritmasının 24 farklı problem üzerinde performansları ölçülerek (dört farklı performans metriği kullanılarak) birbirleriyle karşılaştırılmıştır. Elde edilen sonuçlar araştırmacılar açısından eşsiz bilgiler sunmaktadır.

Supporting Institution

TÜBİTAK

Project Number

1919B011904092

Thanks

Bu çalışmada yürütülen faaliyetler, 2020 yılında TÜBİTAK 2209-A Üniversite Öğrencileri Yurt İçi Araştırma Projeleri Destek Programı kapsamında 1919B011904092 numaralı proje olarak TUBİTAK tarafından desteklenmiştir.

References

  • Cavus, M., Sezer, A., & Yazici, B. (2015). A simulation study on generalized pareto mixture model. In Computational Problems in Science and Engineering (pp. 249-259). Springer, Cham.
  • Deb, K., & Tiwari, S. (2008). Omni-optimizer: A generic evolutionary algorithm for single and multi-objective optimization. European Journal of Operational Research, 185(3), 1062-1087.
  • Deb, K., Pratap, A., Agarwal, S., & Meyarivan, T. A. M. T. (2002). A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE transactions on evolutionary computation, 6(2), 182-197.
  • Deb, Kalyanmoy, et al. "A fast elitist non-dominated sorting genetic algorithm for multi-objective optimization: NSGA-II." International conference on parallel problem solving from nature. Springer, Berlin, Heidelberg, 2000.
  • E. Zitzler, L. Thiele, M. Laumanns, C.M. Fonseca, V.G.D. Fonseca, Performance assessment of multiobjective optimizers: an analysis and review, IEEE Trans. Evol. Comput. 7 (2) (2003) 117–132.
  • Ibrahim, A. M., Tawhid, M. A., & Ward, R. K. (2020). A binary water wave optimization for feature selection. International Journal of Approximate Reasoning, 120, 74-91.
  • Ishibuchi, H., & Murata, T. (1996, May). Multi-objective genetic local search algorithm. In Proceedings of IEEE international conference on evolutionary computation (pp. 119-124). IEEE.
  • Kahraman, H. T., Aras, S., & Gedikli, E. (2020). Fitness-distance balance (FDB): A new selection method for meta-heuristic search algorithms. Knowledge-Based Systems, 190, 105169.
  • Ke, L., Zhang, Q., & Battiti, R. (2014). Hybridization of decomposition and local search for multiobjective optimization. IEEE transactions on cybernetics, 44(10), 1808-1820.
  • Köse, U. (2017). Yapay zeka tabanlı optimizasyon algoritmaları geliştirilmesi, Doktora Tezi, Selçuk Üniversitesi Fen Bilimleri Enstitüsü.
  • KS, S. R., & Murugan, S. (2017). Memory based hybrid dragonfly algorithm for numerical optimization problems. Expert Systems with Applications, 83, 63-78.
  • Liang, J., Suganthan, P. N., Qu, B. Y., Gong, D. W., Yue, C. T., (2019), Problem Definitions and Evaluation Criteria for the CEC 2020 Special Session on Multimodal Multiobjective Optimization, 201912, Zhengzhou University, doi: 10.13140/RG.2.2.31746.02247.
  • Liu, Y., Ishibuchi, H., Nojima, Y., Masuyama, N., & Shang, K. (2018, September). A double-niched evolutionary algorithm and its behavior on polygon-based problems. In International Conference on Parallel Problem Solving from Nature (pp. 262-273). Springer, Cham.
  • Luo, J., Liu, Q., Yang, Y., Li, X., Chen, M. R., & Cao, W. (2017). An artificial bee colony algorithm for multi-objective optimisation. Applied Soft Computing, 50, 235-251.
  • Mirjalili, S. (2016). Dragonfly algorithm: a new meta-heuristic optimization technique for solving single-objective, discrete, and multi-objective problems. Neural Computing and Applications, 27(4), 1053-1073.
  • Mirjalili, S., Gandomi, A. H., Mirjalili, S. Z., Saremi, S., Faris, H., & Mirjalili, S. M. (2017). Salp Swarm Algorithm: A bio-inspired optimizer for engineering design problems. Advances in Engineering Software, 114, 163-191.
  • Mirjalili, S., Jangir, P., & Saremi, S. (2017). Multi-objective ant lion optimizer: a multi-objective optimization algorithm for solving engineering problems. Applied Intelligence, 46(1), 79-95.
  • Osawa, R., Watanabe, S., Hiroyasu, T., & Hiwa, S. (2019, December). Performance Study of Double-Niched Evolutionary Algorithm on Multi-objective Knapsack Problems. In 2019 IEEE Symposium Series on Computational Intelligence (SSCI) (pp. 1793-1801). IEEE.
  • S. Mirjalili, P. Jangir, S. Z. Mirjalili, S. Saremi, and I. N. Trivedi, Optimization of problems with multiple objectives using the multi-verse optimization algorithm, Knowledge-based Systems, 2017, DOI: http://dx.doi.org/10.1016/j.knosys.2017.07.018
  • Santos, R., Borges, G., Santos, A., Silva, M., Sales, C., & Costa, J. C. (2019). Empirical study on rotation and information exchange in particle swarm optimization. Swarm and Evolutionary Computation, 48, 312-328.
  • Serafini, P. (1994). Simulated annealing for multi objective optimization problems. In Multiple criteria decision making (pp. 283-292). Springer, New York, NY.
  • Yue, C., Qu, B., Yu, K., Liang, J., & Li, X. (2019). A novel scalable test problem suite for multimodal multiobjective optimization. Swarm and Evolutionary Computation, 48, 62-71.
  • Yue, C.T., Liang, J.J., Qu, B.Y., (2018), A multi-objective particle swarm optimizer using ring topology for solving multimodal multi-objective problems. IEEE Trans. Evol. Comput. 22,5, 805-817, https://doi.org/10.1109/tevc.2017.2754271.
  • Zhang, X., Tian, Y., Cheng, R., & Jin, Y. (2014). An efficient approach to nondominated sorting for evolutionary multiobjective optimization. IEEE Transactions on Evolutionary Computation, 19(2), 201-213.
  • Zhou, A., Zhang, Q., & Jin, Y. (2009). Approximating the set of Pareto-optimal solutions in both the decision and objective spaces by an estimation of distribution algorithm. IEEE transactions on evolutionary computation, 13(5), 1167-1189.
  • Zhou, Q. Zhang, Y. Jin, Approximating the set of pareto-optimal solutions in both the decision and objective spaces by an estimation of distribution algorithm, IEEE Trans. Evol. Comput. 13 (5) (2009) 1167–1189.
There are 26 citations in total.

Details

Primary Language Turkish
Subjects Computer Software
Journal Section Research Articles
Authors

Mustafa Akbel 0000-0003-0491-5438

Hamdi Kahraman 0000-0001-9985-6324

Project Number 1919B011904092
Publication Date December 29, 2020
Submission Date November 20, 2020
Acceptance Date December 20, 2020
Published in Issue Year 2020 Volume: 8 Issue: 5

Cite

APA Akbel, M., & Kahraman, H. (2020). ÇOK AMAÇLI META-SEZGİSEL OPTİMİZASYON ALGORİTMALARININ PERFORMANSLARININ KARŞILAŞTIRILMASI. Mühendislik Bilimleri Ve Tasarım Dergisi, 8(5), 185-199. https://doi.org/10.21923/jesd.828566