Research Article
BibTex RIS Cite

KÖPÜK DOLGULU HAFİFLETİLMİŞ DONATILI ZEMİN PANELLERİNİN DAVRANIŞI

Year 2022, Volume: 10 Issue: 4, 1315 - 1324, 30.12.2022
https://doi.org/10.21923/jesd.1049392

Abstract

Eğimli veya dik arazilerdeki yanal toprak basıncı ve yüzey duraylılığı gibi etkilere karşı kullanılan ağır prekast betonarme paneller hem şantiyeye iletim hem de yerleştirme sırasında ciddi sorunlara neden olmaktadır. Üretim aşamasında daha hafif elemanların kullanılması arazideki montaj kolaylığına ek olarak işçilik gereksinimini azaltmakta ve uygulama hızını arttırmaktadır. Bu sebeple çalışma kapsamında, gerçek boyutlu donatılı beton numuneler ve genişletilmiş polistren köpük (EPS) elemanlar yardımıyla boşluklu kesitlerle üretilen hafif numunelerin deneysel davranışı incelenmiştir. Özel olarak tasarlanan deneysel düzeneklerde söz konusu numuneler üzerinde düzlem içi diyagonal kesme testleri (panel testleri) ve üç noktalı eğilme testleri gerçekleştirildikten sonra yük - deplasman değişimleri sunulmuştur. Çelik donatılı numunelere kıyasla yaklaşık %13 mertebesinde daha hafif olan EPS köpüklü numuneler eğilme testlerinde benzer davranış sergilerken, panel testlerinde farklı göçme durumları ön plana çıkmaktadır. Alternatif hafif kompozit panellerin kullanılmasıyla konvansiyonel donatılı beton panellerin toplam maliyetinin düşürülebileceği açıkça görülmektedir. Çalışma sonucunda mekanik stabilize donatılı duvarlarda ve donatılı zeminlerde kullanılan konvansiyonel kaplama elemanlarına alternatif özgün bir ürün önerilmiştir.

Supporting Institution

İstanbul Teknik A.Ş.

Project Number

62177

Thanks

Bu çalışma üniversite-sanayi iş birliği kapsamında Eskişehir Teknik Üniversitesi ve İstanbul Teknik A.Ş. ile birlikte yapılan 62177 numaralı proje ile desteklenmiştir.

References

  • Acar, M.C., Şener, A., Özbayrak, A., Çelik, A.İ., (2020). The Effect of Zeolite Additive on Geopolymer Mortars. Journal of Engineering Sciences and Design, 8(3), 820-832.
  • Ahmad, A., Singh, Y., (2021). In-plane Behaviour of Expanded Polystyrene Core Reinforced Concrete Sandwich Panels. Construction and Building Materials, 269, 121804.
  • Assaad, J., Chakar, E., Zéhil, G.P., (2018). Testing and Modeling the Behavior of Sandwich Lightweight Panels Against Wind and Seismic Loads. Engineering Structures, 175, 457-466.
  • Assaad, J.J., El Mir, A., (2020). Durability of Polymer-Modified Lightweight Flowable Concrete Made Using Expanded Polystyrene. Construction and Building Materials, 249, 118764.
  • ASTM C293/C293M - 16, (2016). Standard Test Method for Flexural Strength of Concrete (Using Simple Beam with Center-Point Loading). American Society for Testing and Materials, West Conshohocken, United States.
  • ASTM E 519 - 15, (2021). Standard Test Method for Diagonal Tension (Shear) in Masonry Assemblages. American Society for Testing and Materials, West Conshohocken, United States.
  • Babu, K.G., Babu, D.S., (2003). Behaviour of Lightweight Expanded Polystyrene Concrete Containing Silica Fume. Cement and Concrete Research, 33, 755-762.
  • Benayoune, A., Samad, A.A.A., Abang Ali, A.A., Trikha, D.N., (2007). Response of Pre-cast Reinforced Composite Sandwich Panels to Axial Loading. Construction and Building Materials, 21, 677-685.
  • Borri, A., Corradi, M., Sisti, R., Buratti, C., Belloni, E., Moretti, E., (2016). Masonry Wall Panels Retrofitted with Thermal-Insulating GFRP-Reinforced Jacketing. Materials and Structures, 49, 3957-3968.
  • Cengiz, S., Kamanlı, M., Ünal, A., (2020). Investigation of Flexural Behavior of Reinforced Concrete Beams Produced with Self Compacting and Normal Concrete. Journal of Engineering Sciences and Design, 8(2), 429-438.
  • Chen, B., Liu, J., (2004). Properties of Lightweight Expanded Polystyrene Concrete Reinforced with Steel Fiber. Cement and Concrete Research, 34, 1259-1263.
  • Chen, B., Liu, J., (2007). Mechanical Properties of Polymer-Modified Concretes Containing Expanded Polystyrene Beads. Construction and Building Materials, 21, 7-11.
  • Chen, W., Hao, H., Hughes, D., Shi, Y., Cui, J., Li, Z.X., (2015). Static and Dynamic Mechanical Properties of Expanded Polystyrene. Materials & Design, 69, 170-180.
  • Corradi, M., Mustafaraj, E., Speranzini, E., (2021). Sustainability Considerations in Remediation, Retrofit, And Seismic Upgrading of Historic Masonry Structures. Environmental Science and Pollution Research, https://doi.org/10.1007/s11356-021-17490-7.
  • Corradi, M., Tedeschi, C., Binda, L., Borri, A., (2008). Experimental Evaluation of Shear and Compression Strength of Masonry Wall Before and After Reinforcement: Deep Repointing. Construction and Building Materials, 22, 463-472.
  • Del Zoppo, M., Ludovico, M.D., Prota, A., (2019). Analysis of FRCM and CRM Parameters for The In-Plane Shear Strengthening of Different URM Types. Composites Part B, 171, 20-33.
  • FEMA356, (2000). Prestandards and commentary for the seismic rehabilitation of buildings. Virginia: Federal Emergency Management Agency.
  • Ferrándiz-Mas, V., Bond, T., García-Alcocel, E., Cheeseman, C.R., (2014). Lightweight Mortars Containing Expanded Polystyrene and Paper Sludge Ash. Construction and Building Materials, 61, 285-292.
  • Hou, H., Ji, K., Wang, W., Qu, B., Fang, M., Qiu, C., (2019). Flexural Behavior of Precast Insulated Sandwich Wall Panels: Full-Scale Tests and Design Implications. Engineering Structures, 180, 750–761.
  • Kan, A., Demirboğa, R., (2009). A Novel Material for Lightweight Concrete Production. Cement and Concrete Composites, 31, 489-495.
  • Karayolu Teknik Şartnamesi, (2013). Karayolları Genel Müdürlüğü, Ankara.
  • Lee, J.H., Kang, S.H., Ha, J.Y., Hong, S.G., (2018). Structural Behavior of Durable Composite Sandwich Panels with High Performance Expanded Polystyrene Concrete. International Journal of Concrete Structures and Materials, 12, 21.
  • Longo, F., Cascardi, A., Lassandro, P., Aiello, M.A., (2021). Thermal and Seismic Capacity Improvements for Masonry Building Heritage: A Unified Retrofitting System. Sustainability, 13, 1111.
  • Longo, F., Lassandro, P., Moshiri, A., Phatak, T., Aiello, M.A., Krakowiak, K.J., (2020). Lightweight Geopolymer-Based Mortars for The Structural and Energy Retrofit of Buildings. Energy & Buildings, 225, 110352.
  • Manos, G.C., Melidis, L., Katakalos, K., Kotoulas, L., Anastasiadis, A., Chatziastrou, C., (2021). Masonry Panels with External Thermal Insulation Subjected to In-Plane Diagonal Compression. Case Studies in Construction Materials, 14, e00538.
  • Mohamad, N., Omar, W., Abdullah, R., (2011). Precast Lightweight Foamed Concrete Sandwich Panel (PLFP) Tested under Axial Load: Preliminary Results. Advanced Materials Research, 250-253, 1153-1162.
  • Morales-Alonso, G., Cendón, D.A., Gálvez, F., Erice, B., Sánchez-Gálvez, V., (2011). Analysis of the Fracture of Reinforced Concrete Flat Elements Subjected to Explosions. Anales de Mecánica de la Fractura, 28, 433-438.
  • Naito, C., Hoemann, J., Beacraft, M., Bewick, B., (2012). Performance and Characterization of Shear Ties for Use in Insulated Precast Concrete Sandwich Wall Panels. Journal of Structural Engineering, 138, 52-61.
  • O’Hegarty, R., Kinnane, O., (2020). Review of Precast Concrete Sandwich Panels and Their Innovations. Construction and Building Materials, 233, 117145.
  • Roca, P., Araiza, G., (2010). Shear Response of Brick Masonry Small Assemblages Strengthened with Bonded FRP Laminates for In-Plane Reinforcement. Construction and Building Materials, 24, 1372–1384.
  • Saheed, S., Amran, Y.H.M., El-Zeadani, M., Aziz, F.N.A., Fediuk, R., Alyousef, R., Alabduljabbar, H., (2021). Structural Behavior of Out-of-plane Loaded Precast Lightweight EPS-Foam Concrete C-Shaped Slabs. Journal of Building Engineering, 33, 101597.
  • Sayil, B., Gürdal, E., (1999). The Physical Properties of Polystyrene aggregated Gypsum Blocks. Durability of Building Materials and Components. 8, 496-504.
  • Tunaboyu, O., (2017). Kısa Kolon Oluşumuna Neden Olabilecek Boşluksuz Dolgu Duvarlı Betonarme Çerçeve Davranışının Analitik ve Deneysel Yöntemlerle İrdelenmesi. Doktora Tezi. Anadolu Üniversitesi, Türkiye.
  • Wibowo, A., Wijatmiko, I., Nainggolan, C.R., (2017). Bamboo Reinforced Concrete Slab with Styrofoam Lamina Filler as Solution of Lightweight Concrete Application. Matec Web Conferences, 101, 05012.
  • Xiong, C., Chu, M., Liu, J., Sun, Z., (2018). Shear Behavior of Precast Concrete Wall Structure Based on Two-Way Hollow-Core Precast Panels. Engineering Structures, 176, 74-89.

BEHAVIOR OF THE LIGHTENED REINFORCED SOIL PANELS FILLED WITH POLYSTYRENE FOAM

Year 2022, Volume: 10 Issue: 4, 1315 - 1324, 30.12.2022
https://doi.org/10.21923/jesd.1049392

Abstract

Heavy precast reinforced concrete panels, which are used against the effects of active lateral earth pressure and surface stability on inclined or vertical slopes, cause serious problems during both transportation to the construction site and installation. The use of lighter elements in the production phase reduces the requirement of workmanship and increases the speed of application in addition to the ease of installation in site. Therefore, the experimental behavior of real-sized reinforced concrete specimens and lightweight specimens were investigated, which have been produced with hollow sections via expanded polystyrene foam (EPS). The load-displacement changes of specimens were presented after the completion of in-plane diagonal shear tests (panel tests) and three-point bending tests on mentioned specimens in specially designed experimental setups. EPS foam included specimens are lighter than steel-reinforced ones around 13%, which showed similar behavior in bending tests, but different failure modes stood out in panel tests. It is clearly seen that the total cost of conventional reinforced concrete panels can be reduced by a usage of alternative lightweight composite panels. As a result of the study, an alternative unique product was proposed to the conventional facing members used in mechanically stabilized earth walls and reinforced soils.

Project Number

62177

References

  • Acar, M.C., Şener, A., Özbayrak, A., Çelik, A.İ., (2020). The Effect of Zeolite Additive on Geopolymer Mortars. Journal of Engineering Sciences and Design, 8(3), 820-832.
  • Ahmad, A., Singh, Y., (2021). In-plane Behaviour of Expanded Polystyrene Core Reinforced Concrete Sandwich Panels. Construction and Building Materials, 269, 121804.
  • Assaad, J., Chakar, E., Zéhil, G.P., (2018). Testing and Modeling the Behavior of Sandwich Lightweight Panels Against Wind and Seismic Loads. Engineering Structures, 175, 457-466.
  • Assaad, J.J., El Mir, A., (2020). Durability of Polymer-Modified Lightweight Flowable Concrete Made Using Expanded Polystyrene. Construction and Building Materials, 249, 118764.
  • ASTM C293/C293M - 16, (2016). Standard Test Method for Flexural Strength of Concrete (Using Simple Beam with Center-Point Loading). American Society for Testing and Materials, West Conshohocken, United States.
  • ASTM E 519 - 15, (2021). Standard Test Method for Diagonal Tension (Shear) in Masonry Assemblages. American Society for Testing and Materials, West Conshohocken, United States.
  • Babu, K.G., Babu, D.S., (2003). Behaviour of Lightweight Expanded Polystyrene Concrete Containing Silica Fume. Cement and Concrete Research, 33, 755-762.
  • Benayoune, A., Samad, A.A.A., Abang Ali, A.A., Trikha, D.N., (2007). Response of Pre-cast Reinforced Composite Sandwich Panels to Axial Loading. Construction and Building Materials, 21, 677-685.
  • Borri, A., Corradi, M., Sisti, R., Buratti, C., Belloni, E., Moretti, E., (2016). Masonry Wall Panels Retrofitted with Thermal-Insulating GFRP-Reinforced Jacketing. Materials and Structures, 49, 3957-3968.
  • Cengiz, S., Kamanlı, M., Ünal, A., (2020). Investigation of Flexural Behavior of Reinforced Concrete Beams Produced with Self Compacting and Normal Concrete. Journal of Engineering Sciences and Design, 8(2), 429-438.
  • Chen, B., Liu, J., (2004). Properties of Lightweight Expanded Polystyrene Concrete Reinforced with Steel Fiber. Cement and Concrete Research, 34, 1259-1263.
  • Chen, B., Liu, J., (2007). Mechanical Properties of Polymer-Modified Concretes Containing Expanded Polystyrene Beads. Construction and Building Materials, 21, 7-11.
  • Chen, W., Hao, H., Hughes, D., Shi, Y., Cui, J., Li, Z.X., (2015). Static and Dynamic Mechanical Properties of Expanded Polystyrene. Materials & Design, 69, 170-180.
  • Corradi, M., Mustafaraj, E., Speranzini, E., (2021). Sustainability Considerations in Remediation, Retrofit, And Seismic Upgrading of Historic Masonry Structures. Environmental Science and Pollution Research, https://doi.org/10.1007/s11356-021-17490-7.
  • Corradi, M., Tedeschi, C., Binda, L., Borri, A., (2008). Experimental Evaluation of Shear and Compression Strength of Masonry Wall Before and After Reinforcement: Deep Repointing. Construction and Building Materials, 22, 463-472.
  • Del Zoppo, M., Ludovico, M.D., Prota, A., (2019). Analysis of FRCM and CRM Parameters for The In-Plane Shear Strengthening of Different URM Types. Composites Part B, 171, 20-33.
  • FEMA356, (2000). Prestandards and commentary for the seismic rehabilitation of buildings. Virginia: Federal Emergency Management Agency.
  • Ferrándiz-Mas, V., Bond, T., García-Alcocel, E., Cheeseman, C.R., (2014). Lightweight Mortars Containing Expanded Polystyrene and Paper Sludge Ash. Construction and Building Materials, 61, 285-292.
  • Hou, H., Ji, K., Wang, W., Qu, B., Fang, M., Qiu, C., (2019). Flexural Behavior of Precast Insulated Sandwich Wall Panels: Full-Scale Tests and Design Implications. Engineering Structures, 180, 750–761.
  • Kan, A., Demirboğa, R., (2009). A Novel Material for Lightweight Concrete Production. Cement and Concrete Composites, 31, 489-495.
  • Karayolu Teknik Şartnamesi, (2013). Karayolları Genel Müdürlüğü, Ankara.
  • Lee, J.H., Kang, S.H., Ha, J.Y., Hong, S.G., (2018). Structural Behavior of Durable Composite Sandwich Panels with High Performance Expanded Polystyrene Concrete. International Journal of Concrete Structures and Materials, 12, 21.
  • Longo, F., Cascardi, A., Lassandro, P., Aiello, M.A., (2021). Thermal and Seismic Capacity Improvements for Masonry Building Heritage: A Unified Retrofitting System. Sustainability, 13, 1111.
  • Longo, F., Lassandro, P., Moshiri, A., Phatak, T., Aiello, M.A., Krakowiak, K.J., (2020). Lightweight Geopolymer-Based Mortars for The Structural and Energy Retrofit of Buildings. Energy & Buildings, 225, 110352.
  • Manos, G.C., Melidis, L., Katakalos, K., Kotoulas, L., Anastasiadis, A., Chatziastrou, C., (2021). Masonry Panels with External Thermal Insulation Subjected to In-Plane Diagonal Compression. Case Studies in Construction Materials, 14, e00538.
  • Mohamad, N., Omar, W., Abdullah, R., (2011). Precast Lightweight Foamed Concrete Sandwich Panel (PLFP) Tested under Axial Load: Preliminary Results. Advanced Materials Research, 250-253, 1153-1162.
  • Morales-Alonso, G., Cendón, D.A., Gálvez, F., Erice, B., Sánchez-Gálvez, V., (2011). Analysis of the Fracture of Reinforced Concrete Flat Elements Subjected to Explosions. Anales de Mecánica de la Fractura, 28, 433-438.
  • Naito, C., Hoemann, J., Beacraft, M., Bewick, B., (2012). Performance and Characterization of Shear Ties for Use in Insulated Precast Concrete Sandwich Wall Panels. Journal of Structural Engineering, 138, 52-61.
  • O’Hegarty, R., Kinnane, O., (2020). Review of Precast Concrete Sandwich Panels and Their Innovations. Construction and Building Materials, 233, 117145.
  • Roca, P., Araiza, G., (2010). Shear Response of Brick Masonry Small Assemblages Strengthened with Bonded FRP Laminates for In-Plane Reinforcement. Construction and Building Materials, 24, 1372–1384.
  • Saheed, S., Amran, Y.H.M., El-Zeadani, M., Aziz, F.N.A., Fediuk, R., Alyousef, R., Alabduljabbar, H., (2021). Structural Behavior of Out-of-plane Loaded Precast Lightweight EPS-Foam Concrete C-Shaped Slabs. Journal of Building Engineering, 33, 101597.
  • Sayil, B., Gürdal, E., (1999). The Physical Properties of Polystyrene aggregated Gypsum Blocks. Durability of Building Materials and Components. 8, 496-504.
  • Tunaboyu, O., (2017). Kısa Kolon Oluşumuna Neden Olabilecek Boşluksuz Dolgu Duvarlı Betonarme Çerçeve Davranışının Analitik ve Deneysel Yöntemlerle İrdelenmesi. Doktora Tezi. Anadolu Üniversitesi, Türkiye.
  • Wibowo, A., Wijatmiko, I., Nainggolan, C.R., (2017). Bamboo Reinforced Concrete Slab with Styrofoam Lamina Filler as Solution of Lightweight Concrete Application. Matec Web Conferences, 101, 05012.
  • Xiong, C., Chu, M., Liu, J., Sun, Z., (2018). Shear Behavior of Precast Concrete Wall Structure Based on Two-Way Hollow-Core Precast Panels. Engineering Structures, 176, 74-89.
There are 35 citations in total.

Details

Primary Language Turkish
Subjects Civil Engineering
Journal Section Research Articles
Authors

Burak Evirgen 0000-0003-4202-5479

Onur Tunaboyu 0000-0001-6858-4290

Barış Büyük 0000-0002-1988-8260

Gizem Tuğçe Çil 0000-0001-6899-5188

Project Number 62177
Publication Date December 30, 2022
Submission Date December 29, 2021
Acceptance Date August 9, 2022
Published in Issue Year 2022 Volume: 10 Issue: 4

Cite

APA Evirgen, B., Tunaboyu, O., Büyük, B., Çil, G. T. (2022). KÖPÜK DOLGULU HAFİFLETİLMİŞ DONATILI ZEMİN PANELLERİNİN DAVRANIŞI. Mühendislik Bilimleri Ve Tasarım Dergisi, 10(4), 1315-1324. https://doi.org/10.21923/jesd.1049392