Research Article
BibTex RIS Cite

INVESTIGATION OF THE TRIBOLOGICAL PROPERTIES OF COATED NİTİ COATINGS AT DIFFERENT SUBSTRATE DEPOSITING TEMPERATURES

Year 2022, Volume: 10 Issue: 4, 1325 - 1332, 30.12.2022
https://doi.org/10.21923/jesd.1121359

Abstract

Commercial pure titanium; It is a lightweight, biocompatible, high-strength and corrosion-resistant implant material that is widely preferred in dental and orthopedic applications. The aim of this study; It is an attempt to improve the friction and wear properties of the material in order to prevent the high unstable friction coefficients of commercial pure titanium, which is one of the dental implant materials, in contact with metals. For this purpose, NiTi film coatings were applied to Ti substrate samples at different deposition temperatures by RF magnetron sputtering method. The reason for choosing NiTi coatings as coating material; literature review shows that NiTi coatings can convert the applied stress into elastic deformation, give low hardness, high strength, and are biocompatible and sticky on implant materials. After coatings, chemical compositions were determined from the surface of the films using the EDS detector of the Scanning Electron Microscope. X-Ray diffraction measurements of the films deposited at different substrate deposition temperatures were carried out using the XRD device. How the friction coefficient and wear rates of NiTi film coatings are affected by the change in substrate deposition temperatures has been revealed as a result of testing in the nano tribometer wear device.

References

  • Agins, H.J., Alcock, N.W., Bansal, M., Salvati, E.A., Wilson, P.D., Pellicci, P.M., Bullough, P.G., 1988. Metallic Wear in Failed Titanium-Alloy Total Hip Replacements. A Histological and Quantitative Analysis. J. Bone Joint Surgery, 70, 347–356.
  • Archard, J.F., 1961. Single Contacts and Multiple Encounters. J. Appl. Phys., 32, 1420–1425.
  • Cortada, M., Giner, L., Costa, S., Gil, F.J., Rodriguez, D., Planell, J.A., 2000. Galvanic Corrosion Behavior of Titanium Implants Coupled to Dental Alloys. J. Materials Science Materials in Medicine, 11, 287–293.
  • Güven, Ş.Y., 2014. Biyouyumluluk ve Biyomalzemelerin Seçimi. Mühendislik Bilimleri ve Tasarım Dergisi, 2(3), 303-311.
  • Choudhary, N., Kharat, D.K., Kaur, D., 2011. Structural, Electrical and Mechanical Properties of Magnetron Sputtered NiTi/PZT/TiOX Thin Film Heterostructures. Surface and Coatings Technology, 205(11), 3387-3396.
  • Lausmaa, J., Mattson, L., Rolander, U., Kasemo, B., 1986. Chemical Composition and Morphology of Titanium Surface Oxides. Materials Research Society Symposium Proceedings, 55, 351-359.
  • Lepule, M., Obadele, B., Andrews, A., Olubambi, P., 2015. Corrosion and Wear Behaviour of ZrO2 Modified NiTi Coatings on AISI 316 Stainless Steel. Surface and Coatings Technology, 261, 21-27.
  • Monteriro, D.R., Gorup, L.F., Takamiya, A.C., Ruvollo, E.R., Camargo, E.R., Barbosa, D.B., 2009. The Growing Importance of Materials that Prevent Microbial Adhesion: Antimicrobial Effect of Medical Devices Containing Silver. International Journal Antimicrob Agents, 34, 103-110.
  • Poyraz, M., Tunay, R.F., 2016. RF Magnetron Saçtırma Tekniği ile AISI 440C Çelik Alttaşlar Üzerine MoS2 İnce Film Kaplama Uygulaması. Mühendislik Bilimleri ve Tasarım Dergisi, 4(2), 75-84.
  • Su, Y.M., Wang, W.P., He, J., 2018. Research and Development of Plasma Physical Vapor Deposition Equipment. Hot Working Technology, 47, 21-26.
  • Thangavel, E., Dhandapani, V.S., Dharmalingam, K., Marimuthu, M., Veerapandian, M., Kim, S., Kim, B., Ramasundaram, S., Kim, D.E., 2019. RF Magnetron Sputtering Mediated NiTi/Ag Coating on Ti-Alloy Substrate with Enhanced Biocompatibility and Durability. Materials Science, 99, 304-314.
  • Wang, Y.L., Wan, Y.Z., Tao, H.M., 1998. Bioactive Calcium Phosphate Ceramic Coatings Prepared by Electrodeposition. Plating and Finishing, 20, 20-23.
  • Ye, Y.Y., 2014. High-End Manufacturing Technology and Life Science Combined with Implantable Medical Instruments Malignant New Trend. Magnetic Element and Power Supply, 150-153.
  • Zhao, L., Wang, H., Huo, K., Cui, L., Zhang, W., Ni, H., Zhang, Y., Wu, Z., Chu, P., 2011. Antibacterial Nano-Structred Titania Coating Incorporated with Silver Nanoparticles. Biomaterials, 32(24), 5706-5716.
  • Zhao, L., Chu, P.K., Zhang, Y., Wu, Z., 2009. Atibacterial Coatings on Titanium Implants. Journal of Biomedical Materials Research Part B Applied Biomaterials, 91, 470-480.

FARKLI ALTTAŞ BİRİKTİRME SICAKLIKLARINDA KAPLANMIŞ NİTİ KAPLAMALARIN TRİBOLOJİK ÖZELLİKLERİNİN İNCELENMESİ

Year 2022, Volume: 10 Issue: 4, 1325 - 1332, 30.12.2022
https://doi.org/10.21923/jesd.1121359

Abstract

Ticari saf titanyum; dental ve ortopedik uygulamalarda yaygın olarak tercih edilen, hafif, biyouyumlu, yüksek mukavemetli ve korozyona dayanıklı bir implant malzemesidir. Bu çalışmanın amacı; dental implant malzemelerinden ticari saf titanyumun metallerle temasında göstermiş olduğu yüksek kararsız sürtünme katsayılarını önlemek ve malzemenin sürtünme, aşınma özelliklerinin iyileştirilmeye çalışılmasıdır. Bu maksatla Ti alttaş numunelere farklı biriktirme sıcaklıklarında RF magnetron saçtırma yöntemi kullanılarak NiTi film kaplamalar uygulanmıştır. NiTi kaplamaların kaplama malzemesi olarak seçilmesinin sebebi; literatür incelemelerinde bu kaplamaların uygulanan stresi elastik deformasyona dönüştürebilmesi, düşük sertlik, yüksek mukavemet vermesi ve implant malzemeleri üzerinde biyouyumlu ve yapışkan olduğunun gösterilmesidir. Kaplamalar sonrası Taramalı Elektron Mikroskobunun EDS dedektörü kullanılarak filmlerin yüzeyinden kimyasal kompozisyonlar belirlenmiştir. XRD cihazı kullanılarak farklı alttaş biriktirme sıcaklıklarında biriktirilen filmlerin X-Işınları kırınım ölçümleri gerçekleştirilmiştir. NiTi film kaplamaların sürtünme katsayısı ve aşınma oranlarının alttaş biriktirme sıcaklıklarındaki değişimle nasıl etkilendiğini belirlemek için, nano tribometre aşınma cihazında bu filmler teste tabii tutulmuştur.

References

  • Agins, H.J., Alcock, N.W., Bansal, M., Salvati, E.A., Wilson, P.D., Pellicci, P.M., Bullough, P.G., 1988. Metallic Wear in Failed Titanium-Alloy Total Hip Replacements. A Histological and Quantitative Analysis. J. Bone Joint Surgery, 70, 347–356.
  • Archard, J.F., 1961. Single Contacts and Multiple Encounters. J. Appl. Phys., 32, 1420–1425.
  • Cortada, M., Giner, L., Costa, S., Gil, F.J., Rodriguez, D., Planell, J.A., 2000. Galvanic Corrosion Behavior of Titanium Implants Coupled to Dental Alloys. J. Materials Science Materials in Medicine, 11, 287–293.
  • Güven, Ş.Y., 2014. Biyouyumluluk ve Biyomalzemelerin Seçimi. Mühendislik Bilimleri ve Tasarım Dergisi, 2(3), 303-311.
  • Choudhary, N., Kharat, D.K., Kaur, D., 2011. Structural, Electrical and Mechanical Properties of Magnetron Sputtered NiTi/PZT/TiOX Thin Film Heterostructures. Surface and Coatings Technology, 205(11), 3387-3396.
  • Lausmaa, J., Mattson, L., Rolander, U., Kasemo, B., 1986. Chemical Composition and Morphology of Titanium Surface Oxides. Materials Research Society Symposium Proceedings, 55, 351-359.
  • Lepule, M., Obadele, B., Andrews, A., Olubambi, P., 2015. Corrosion and Wear Behaviour of ZrO2 Modified NiTi Coatings on AISI 316 Stainless Steel. Surface and Coatings Technology, 261, 21-27.
  • Monteriro, D.R., Gorup, L.F., Takamiya, A.C., Ruvollo, E.R., Camargo, E.R., Barbosa, D.B., 2009. The Growing Importance of Materials that Prevent Microbial Adhesion: Antimicrobial Effect of Medical Devices Containing Silver. International Journal Antimicrob Agents, 34, 103-110.
  • Poyraz, M., Tunay, R.F., 2016. RF Magnetron Saçtırma Tekniği ile AISI 440C Çelik Alttaşlar Üzerine MoS2 İnce Film Kaplama Uygulaması. Mühendislik Bilimleri ve Tasarım Dergisi, 4(2), 75-84.
  • Su, Y.M., Wang, W.P., He, J., 2018. Research and Development of Plasma Physical Vapor Deposition Equipment. Hot Working Technology, 47, 21-26.
  • Thangavel, E., Dhandapani, V.S., Dharmalingam, K., Marimuthu, M., Veerapandian, M., Kim, S., Kim, B., Ramasundaram, S., Kim, D.E., 2019. RF Magnetron Sputtering Mediated NiTi/Ag Coating on Ti-Alloy Substrate with Enhanced Biocompatibility and Durability. Materials Science, 99, 304-314.
  • Wang, Y.L., Wan, Y.Z., Tao, H.M., 1998. Bioactive Calcium Phosphate Ceramic Coatings Prepared by Electrodeposition. Plating and Finishing, 20, 20-23.
  • Ye, Y.Y., 2014. High-End Manufacturing Technology and Life Science Combined with Implantable Medical Instruments Malignant New Trend. Magnetic Element and Power Supply, 150-153.
  • Zhao, L., Wang, H., Huo, K., Cui, L., Zhang, W., Ni, H., Zhang, Y., Wu, Z., Chu, P., 2011. Antibacterial Nano-Structred Titania Coating Incorporated with Silver Nanoparticles. Biomaterials, 32(24), 5706-5716.
  • Zhao, L., Chu, P.K., Zhang, Y., Wu, Z., 2009. Atibacterial Coatings on Titanium Implants. Journal of Biomedical Materials Research Part B Applied Biomaterials, 91, 470-480.
There are 15 citations in total.

Details

Primary Language Turkish
Subjects Mechanical Engineering
Journal Section Research Articles
Authors

Mehmet Poyraz 0000-0002-9469-8037

Publication Date December 30, 2022
Submission Date May 25, 2022
Acceptance Date August 11, 2022
Published in Issue Year 2022 Volume: 10 Issue: 4

Cite

APA Poyraz, M. (2022). FARKLI ALTTAŞ BİRİKTİRME SICAKLIKLARINDA KAPLANMIŞ NİTİ KAPLAMALARIN TRİBOLOJİK ÖZELLİKLERİNİN İNCELENMESİ. Mühendislik Bilimleri Ve Tasarım Dergisi, 10(4), 1325-1332. https://doi.org/10.21923/jesd.1121359