Research Article
BibTex RIS Cite

TOZ AKTİF KARBONUN NİTRİK ASİT VE SÜLFONİK ASİT İLE KİMYASAL MODİFİKASYONU VE KARAKTERİZASYONU

Year 2022, Volume: 10 Issue: 4, 1333 - 1340, 30.12.2022
https://doi.org/10.21923/jesd.1124539

Abstract

Kirleticilerin giderimi için adsorpsiyon prosesinde aktif karbon yaygın olarak kullanılan adsorbenttir. Aktif karbonun adsorpsiyon kapasitesini arttırmak için fiziksel, kimyasal ve biyolojik modifikasyonlar yapılmaktadır. Bu çalışmada nitrik asit ve sülfonik asit kullanılarak yapılan kimyasal modifikasyonunun aktif karbonun yapısal ve kimyasal özellikleri üzerine etkileri araştırılmıştır. Orijinal, nitrik asit ve sülfonik asit ile modifiye edilmiş adsorbentlerinin karakterizasyon analizi, taramalı elektron mikroskobu (SEM), brunauer–emmett–teller (BET), fourier transform kızılötesi spektrofotometre (FTIR) analizleri ile belirlenmiştir. Yüzey özelliklerine modifikasyonun etkilerini belirlemek için pHpzc ve yüzey asidik bazik gruplar tespit edilmiştir. Hem nitrik asit hem de sülfonik asit modifikasyonu BET yüzey alanını, por hacmi ve genişliğinde artışa, pHpzc ve yüzey asit gruplarının miktarında ise azalmaya yol açmıştır. Özellikle sülfonik asit ile modifikasyondan sonra yüzey alanı 273,56 m2/g’dan 868,48 m2/g’a toplam gözenek hacmi; 0,22 cm3/g değerinden 0,88 cm3/g değerine artışı önemli bir sonuçtur. Nitrik asit modifikasyonu sonucu –OH, C=O grupları, sülfonik asit modifikasyonu sonucu ise SO3H, S=O ve C-S fonksiyonel gruplarının yapıya eklendiği gözlenmiştir.

Supporting Institution

TÜBİTAK

Project Number

118Y402

Thanks

Bu çalışma Türkiye Bilimsel ve Teknolojik Araştırma Kurumu (TÜBİTAK) tarafından 118Y402 Proje Numarası ile desteklenmiştir

References

  • Abdulrasheed, A. A., Jalil, A. A., Triwahyono, S., Zaini, M. A. A., Gambo, Y., Ibrahim, M., 2018. Surface modification of activated carbon for adsorption of SO2 and NOX: A review of existing and emerging Technologies. Renewable and Sustainable Energy Reviews, 94, 1067-1085.
  • Aguiar, C. R., Fontana, É., Valle, J. A., Souza, A. A., Morgado, A. F., Souza, S. M., 2016. Adsorption of Basic Yellow 28 onto chemically‐modified activated carbon: Characterization and adsorption mechanisms. The Canadian Journal of Chemical Engineering, 94(5), 947-955.
  • Angın, D., Sarikulce, S., 2017. The effect of activation temperature on properties of activated carbon prepared from wine industry pressing waste.
  • Bayat, M., Alighardashi, A., Sadeghasadi, A., 2018. Fixed-bed column and batch reactors performance in removal of diazinon pesticide from aqueous solutions by using walnut shell-modified activated carbon. Environmental Technology & Innovation, 12, 148-159.
  • Cao, Y., 2017. Activated carbon preparation and modification for Adsorption. South Dakota State University.
  • Chen, X., Farber, M., Gao, Y., Kulaots, I., Suuberg, E. M., Hurt, R. H., 2003. Mechanisms of surfactant adsorption on non-polar, air-oxidized and ozone-treated carbon surfaces. Carbon, 41(8), 1489-1500.
  • Chen, J. P., Wu, S., 2004. Acid/base-treated activated carbons: characterization of functional groups and metal adsorptive properties. Langmuir, 20(6), 2233-2242.
  • Chen, W. S., Chen, Y. C., Lee, C.H., 2022. Modified activated carbon for copper ion removal from aqueous solution. Processes, 10(1), 150.
  • Cheng, W., Dastgheib, S.A., Karanfil, T., 2005. Adsorption of dissolved natural organic matter by modified activated carbons. Water Reserach, 39, 2281-2290.
  • Chingombe, P., Saha, B., Wakeman, R. J., 2005. Surface modification and characterisation of a coal-based activated carbon. Carbon, 43(15), 3132-3143.
  • Ding, Z., Hu, X., Wan, Y., Wang, S., Gao, B., 2016. Removal of lead, copper, cadmium, zinc, and nickel from aqueous solutions by alkali-modified biochar: Batch and column tests. Journal of Industrial and Engineering Chemistry, 33, 239-245.
  • de Oliveira Ferreira, M. E., Vaz, B. G., Borba, C. E., Alonso, C. G., Ostroski, I. C., 2019. Modified activated carbon as a promising adsorbent for quinoline removal. Microporous and Mesoporous Materials, 277, 208-216.
  • Demiral, İ., Samdan, C., Demiral, H., 2021. Enrichment of the surface functional groups of activated carbon by modification method.Surfaces and Interfaces, 22, 100873.
  • Godini, H.,Khorramabady, G.S., Mirhosseini, S.H., 2011. The Application of Iron-Coated Activated Carbon in Humic Acid Removal From Water, 2nd International Conference on Environmental Science and Technology IACSIT Press, Singapore
  • Goswami, M., Phukan, P., 2017. Enhanced adsorption of cationic dyes using sulfonic acid modified activated carbon. Journal of Environmental Chemical Engineering, 5(4), 3508-3517.
  • Gökce, Y., Aktas, Z., 2014. Nitric acid modification of activated carbon produced from waste tea and adsorption of methylene blue and phenol. Applied Surface Science, 313, 352-359.
  • Gupta, V. K., Nayak, A., Agarwal, S., 2015. Bioadsorbents for remediation of heavy metals: current status and their future prospects.Environmental engineering research,20(1), 1-18.
  • Hassan, A.F., Elhadidy, H., Abdel-Mohsen, A.M., 2017. Adsorption and photocatalytic detoxification of diazinon using iron and nanotitania modified activated carbons. Journal of the Taiwan Institute of Chemical Engineers, 75, 299–306.
  • Heidarinejad, Z., Dehghani, M. H., Heidari, M., Javedan, G., Ali, I., Sillanpää, M., 2020. Methods for preparation and activation of activated carbon: a review. Environmental Chemistry Letters, 18(2), 393-415.
  • İnal, İ. İ. G., Gökçe, Y., Yağmur, E., Aktaş, Z., 2020. Nitrik asit ile modifiye edilmiş biyokütle temelli aktif karbonun süperkapasitör performansının incelenmesi. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 35(3), 1243-1256.
  • Kamari, M., Shafiee, S., Salimi, F., Karami, C., 2019. Comparison of modified boehmite nanoplatelets and nanowires for dye removal from aqueous solution. Desalination and Water Treatment, 161, 304-314.
  • Kasnejad, M. H., Esfandiari, A., Kaghazchi, T., Asasian, N., 2012. Effect of pre-oxidation for introduction of nitrogen containing functional groups into the structure of activated carbons and its influence on Cu (II) adsorption. Journal of the Taiwan Institute of Chemical Engineers, 43(5), 736-740.
  • Li, K., Jiang, Y., Wang, X., Bai, D., Li, H., Zheng, Z., 2016. Effect of nitric acid modification on the lead (II) adsorption of mesoporous biochars with different mesopore size distributions. Clean Technologies and Environmental Policy, 18(3), 797-805.
  • Liu, M., Xiao, C., 2018. Research progress on modification of activated carbon. In E3S Web of Conferences (Vol. 38, p. 02005). EDP Sciences.
  • Liu, S. X., Chen, X., Chen, X. Y., Liu, Z. F., Wang, H.L., 2007. Activated carbon with excellent chromium (VI) adsorption performance prepared by acid–base surface modification. Journal of Hazardous Materials, 141(1), 315-319.
  • Manjunath, S.V., Baghel, R.S., Kumar, M., 2020. Antagonistic and synergistic analysis of antibiotic adsorption on Prosopis juliflora activated carbon in multicomponent systems. Chemical Engineering Journal, 381, 122713.
  • Mariana, M., HPS, A. K., Mistar, E. M., Yahya, E. B., Alfatah, T., Danish, M., Amayreh, M., 2021. Recent advances in activated carbon modification techniques for enhanced heavy metal adsorption. Journal of Water Process Engineering, 43, 102221.
  • Maussavi, G., Hosseini, H., Alahabadi, A., 2013. The investigation of diazinon pesticide removal from contaminated water by adsorption onto NH4Cl-induced activated carbon. Chemical Engineering Journal 214, 172–179.
  • Nekouei, F., Nekouei, S., Tyagi, I., Gupta, V. K. 2015. Kinetic, thermodynamic and isotherm studies for acid blue 129 removal from liquids using copper oxide nanoparticle-modified activated carbon as a novel adsorbent. Journal of Molecular Liquids, 201, 124-133.
  • Parlayıcı, Ş., 2008. Bazı ağır metal iyonlarının uzaklaştırılmasında kullanılacak yeni tabii ve sentetik kompozit adsorbanların geliştirilmesi. Selçuk Üniversitesi, Fen Bilimleri Enstitüsü, Kimya Mühendisliği Anabilim Dalı, Doktora Tezi, 404s.
  • Reddy, K.S.K., Al Shoaibi, A., Srinivasakannan, C., 2012. A comparison of microstructure and adsorption characteristics of activated carbons by CO2 and H3PO4 activation from date palm pits. N. Carbon Mater. 27, 344–351.
  • Pietrzak, R., Nowicki, P., Wachowska, H., 2009. The influence of oxidation with nitric acid on the preparation and properties of active carbon enriched in nitrogen. Applied Surface Science, 255(6), 3586-3593.
  • Rivera-Utrilla, J., Sánchez-Polo, M., Gómez-Serrano, V., Álvarez, P. M., Alvim-Ferraz, M. C. M., Dias, J. M., 2011. Activated carbon modifications to enhance its water treatment applications. An overview. Journal of hazardous materials, 187(1-3), 1-23.
  • Shafeeyan, M. S., Daud, W. M. A. W., Houshmand, A., Shamiri, A., 2010. A review on surface modification of activated carbon for carbon dioxide Adsorption. Journal of Analytical and Applied Pyrolysis, 89(2), 143-151.
  • ShamsiJazeyi, H., Kaghazchi, T., 2010. Investigation of nitric acid treatment of activated carbon for enhanced aqueous mercury removal. Journal of Industrial and Engineering Chemistry, 16(5), 852-858.
  • Su, P., Zhang, J., Tang, J., Zhang, C., 2019. Preparation of nitric acid modified powder activated carbon to remove trace amount of Ni (II) in aqueous solution. Water Science and Technology, 80(1), 86-97.
  • Sultana, M., Rownok, M. H., Sabrin, M., Rahaman, M. H., Alam, S. N., 2022. A review on experimental chemically modified activated carbon to enhance dye and heavy metals adsorption. Cleaner Engineering and Technology, 6, 100382.
  • Xu, Y., Luo, G., He, S., Deng, F., Pang, Q., Xu, Y., Yao, H., 2019. Efficient removal of elemental mercury by magnetic chlorinated biochars derived from co-pyrolysis of Fe (NO3) 3-laden wood and polyvinyl chloride waste. Fuel, 239, 982-990.
  • Tan, I., Ahmad, A., Hameed, B., 2008. Enhancement of basic dye adsorption uptake from aqueous solutions using chemically modified oil palm shell activated carbon. Colloids Surf. A Physicochem. Eng. Asp. 318, 88–96.
  • Yu, C., Fan, X., Yu, L., Bandosz, T. J., Zhao, Z., Qiu, J., 2013. Adsorptive removal of thiophenic compounds from oils by activated carbon modified with concentrated nitric acid. Energy & fuels, 27(3), 1499-1505.
  • Yu, H., Jin, Y., Li, Z., Peng, F., Wang, H., 2008. Synthesis and characterization of sulfonated single-walled carbon nanotubes and their performance as solid acid catalyst. Journal of Solid State Chemistry, 181(3), 432-438.
  • Zhou, Y., Li, W., Qi, W., Chen, S., Tan, Q., Wei, Z., Gong, L., Chen, J., Zhou, W., 2021. The comprehensive evaluation model and optimization selection of activated carbon in the O3-BAC treatment process. Journal of Water Process Engineering, 40, 101931.

CHEMICAL MODIFICATION AND CHARACTERIZATION OF POWDER ACTIVATED CARBON WITH NITRIC ACID AND SULFONIC ACID

Year 2022, Volume: 10 Issue: 4, 1333 - 1340, 30.12.2022
https://doi.org/10.21923/jesd.1124539

Abstract

Activated carbon is a widely used adsorbent in the adsorption process for the removal of toxic pollutants. Physical, chemical and biological modifications are necessary to increase the adsorption capacity of activated carbon. In this study, the effects of chemical modification of activated carbon on its structural and chemical properties were investigated using nitric acid and sulfonic acid. Characterization analysis of original, nitric acid modified and sulfonic acid modified activated carbons, scanning electron microscope (SEM), brunauer–emmett–teller (BET), fourier transform infrared spectrophotometer (FTIR) were determined by their analysis. The effects of modification on surface properties were explained by pHpzc and surface acidic-basic group experiments. Both nitric acid and sulfonic acid modifications led to an increase in BET surface area, pore volume and width, and a decrease in the amount of pHpzc and surface acid groups. Especially in sulfonic acid modification, the total pore volume from 273.56 m2/g to 868.48 m2/g; An increase from 0.22 cm3/g to 0.88 cm3/g is an important result. It was observed that –OH, C=O groups were added as a result of nitric acid modification, and SO3H, S=O and C-S functional groups were added to the structure as a result of sulfonic acid modification.

Project Number

118Y402

References

  • Abdulrasheed, A. A., Jalil, A. A., Triwahyono, S., Zaini, M. A. A., Gambo, Y., Ibrahim, M., 2018. Surface modification of activated carbon for adsorption of SO2 and NOX: A review of existing and emerging Technologies. Renewable and Sustainable Energy Reviews, 94, 1067-1085.
  • Aguiar, C. R., Fontana, É., Valle, J. A., Souza, A. A., Morgado, A. F., Souza, S. M., 2016. Adsorption of Basic Yellow 28 onto chemically‐modified activated carbon: Characterization and adsorption mechanisms. The Canadian Journal of Chemical Engineering, 94(5), 947-955.
  • Angın, D., Sarikulce, S., 2017. The effect of activation temperature on properties of activated carbon prepared from wine industry pressing waste.
  • Bayat, M., Alighardashi, A., Sadeghasadi, A., 2018. Fixed-bed column and batch reactors performance in removal of diazinon pesticide from aqueous solutions by using walnut shell-modified activated carbon. Environmental Technology & Innovation, 12, 148-159.
  • Cao, Y., 2017. Activated carbon preparation and modification for Adsorption. South Dakota State University.
  • Chen, X., Farber, M., Gao, Y., Kulaots, I., Suuberg, E. M., Hurt, R. H., 2003. Mechanisms of surfactant adsorption on non-polar, air-oxidized and ozone-treated carbon surfaces. Carbon, 41(8), 1489-1500.
  • Chen, J. P., Wu, S., 2004. Acid/base-treated activated carbons: characterization of functional groups and metal adsorptive properties. Langmuir, 20(6), 2233-2242.
  • Chen, W. S., Chen, Y. C., Lee, C.H., 2022. Modified activated carbon for copper ion removal from aqueous solution. Processes, 10(1), 150.
  • Cheng, W., Dastgheib, S.A., Karanfil, T., 2005. Adsorption of dissolved natural organic matter by modified activated carbons. Water Reserach, 39, 2281-2290.
  • Chingombe, P., Saha, B., Wakeman, R. J., 2005. Surface modification and characterisation of a coal-based activated carbon. Carbon, 43(15), 3132-3143.
  • Ding, Z., Hu, X., Wan, Y., Wang, S., Gao, B., 2016. Removal of lead, copper, cadmium, zinc, and nickel from aqueous solutions by alkali-modified biochar: Batch and column tests. Journal of Industrial and Engineering Chemistry, 33, 239-245.
  • de Oliveira Ferreira, M. E., Vaz, B. G., Borba, C. E., Alonso, C. G., Ostroski, I. C., 2019. Modified activated carbon as a promising adsorbent for quinoline removal. Microporous and Mesoporous Materials, 277, 208-216.
  • Demiral, İ., Samdan, C., Demiral, H., 2021. Enrichment of the surface functional groups of activated carbon by modification method.Surfaces and Interfaces, 22, 100873.
  • Godini, H.,Khorramabady, G.S., Mirhosseini, S.H., 2011. The Application of Iron-Coated Activated Carbon in Humic Acid Removal From Water, 2nd International Conference on Environmental Science and Technology IACSIT Press, Singapore
  • Goswami, M., Phukan, P., 2017. Enhanced adsorption of cationic dyes using sulfonic acid modified activated carbon. Journal of Environmental Chemical Engineering, 5(4), 3508-3517.
  • Gökce, Y., Aktas, Z., 2014. Nitric acid modification of activated carbon produced from waste tea and adsorption of methylene blue and phenol. Applied Surface Science, 313, 352-359.
  • Gupta, V. K., Nayak, A., Agarwal, S., 2015. Bioadsorbents for remediation of heavy metals: current status and their future prospects.Environmental engineering research,20(1), 1-18.
  • Hassan, A.F., Elhadidy, H., Abdel-Mohsen, A.M., 2017. Adsorption and photocatalytic detoxification of diazinon using iron and nanotitania modified activated carbons. Journal of the Taiwan Institute of Chemical Engineers, 75, 299–306.
  • Heidarinejad, Z., Dehghani, M. H., Heidari, M., Javedan, G., Ali, I., Sillanpää, M., 2020. Methods for preparation and activation of activated carbon: a review. Environmental Chemistry Letters, 18(2), 393-415.
  • İnal, İ. İ. G., Gökçe, Y., Yağmur, E., Aktaş, Z., 2020. Nitrik asit ile modifiye edilmiş biyokütle temelli aktif karbonun süperkapasitör performansının incelenmesi. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 35(3), 1243-1256.
  • Kamari, M., Shafiee, S., Salimi, F., Karami, C., 2019. Comparison of modified boehmite nanoplatelets and nanowires for dye removal from aqueous solution. Desalination and Water Treatment, 161, 304-314.
  • Kasnejad, M. H., Esfandiari, A., Kaghazchi, T., Asasian, N., 2012. Effect of pre-oxidation for introduction of nitrogen containing functional groups into the structure of activated carbons and its influence on Cu (II) adsorption. Journal of the Taiwan Institute of Chemical Engineers, 43(5), 736-740.
  • Li, K., Jiang, Y., Wang, X., Bai, D., Li, H., Zheng, Z., 2016. Effect of nitric acid modification on the lead (II) adsorption of mesoporous biochars with different mesopore size distributions. Clean Technologies and Environmental Policy, 18(3), 797-805.
  • Liu, M., Xiao, C., 2018. Research progress on modification of activated carbon. In E3S Web of Conferences (Vol. 38, p. 02005). EDP Sciences.
  • Liu, S. X., Chen, X., Chen, X. Y., Liu, Z. F., Wang, H.L., 2007. Activated carbon with excellent chromium (VI) adsorption performance prepared by acid–base surface modification. Journal of Hazardous Materials, 141(1), 315-319.
  • Manjunath, S.V., Baghel, R.S., Kumar, M., 2020. Antagonistic and synergistic analysis of antibiotic adsorption on Prosopis juliflora activated carbon in multicomponent systems. Chemical Engineering Journal, 381, 122713.
  • Mariana, M., HPS, A. K., Mistar, E. M., Yahya, E. B., Alfatah, T., Danish, M., Amayreh, M., 2021. Recent advances in activated carbon modification techniques for enhanced heavy metal adsorption. Journal of Water Process Engineering, 43, 102221.
  • Maussavi, G., Hosseini, H., Alahabadi, A., 2013. The investigation of diazinon pesticide removal from contaminated water by adsorption onto NH4Cl-induced activated carbon. Chemical Engineering Journal 214, 172–179.
  • Nekouei, F., Nekouei, S., Tyagi, I., Gupta, V. K. 2015. Kinetic, thermodynamic and isotherm studies for acid blue 129 removal from liquids using copper oxide nanoparticle-modified activated carbon as a novel adsorbent. Journal of Molecular Liquids, 201, 124-133.
  • Parlayıcı, Ş., 2008. Bazı ağır metal iyonlarının uzaklaştırılmasında kullanılacak yeni tabii ve sentetik kompozit adsorbanların geliştirilmesi. Selçuk Üniversitesi, Fen Bilimleri Enstitüsü, Kimya Mühendisliği Anabilim Dalı, Doktora Tezi, 404s.
  • Reddy, K.S.K., Al Shoaibi, A., Srinivasakannan, C., 2012. A comparison of microstructure and adsorption characteristics of activated carbons by CO2 and H3PO4 activation from date palm pits. N. Carbon Mater. 27, 344–351.
  • Pietrzak, R., Nowicki, P., Wachowska, H., 2009. The influence of oxidation with nitric acid on the preparation and properties of active carbon enriched in nitrogen. Applied Surface Science, 255(6), 3586-3593.
  • Rivera-Utrilla, J., Sánchez-Polo, M., Gómez-Serrano, V., Álvarez, P. M., Alvim-Ferraz, M. C. M., Dias, J. M., 2011. Activated carbon modifications to enhance its water treatment applications. An overview. Journal of hazardous materials, 187(1-3), 1-23.
  • Shafeeyan, M. S., Daud, W. M. A. W., Houshmand, A., Shamiri, A., 2010. A review on surface modification of activated carbon for carbon dioxide Adsorption. Journal of Analytical and Applied Pyrolysis, 89(2), 143-151.
  • ShamsiJazeyi, H., Kaghazchi, T., 2010. Investigation of nitric acid treatment of activated carbon for enhanced aqueous mercury removal. Journal of Industrial and Engineering Chemistry, 16(5), 852-858.
  • Su, P., Zhang, J., Tang, J., Zhang, C., 2019. Preparation of nitric acid modified powder activated carbon to remove trace amount of Ni (II) in aqueous solution. Water Science and Technology, 80(1), 86-97.
  • Sultana, M., Rownok, M. H., Sabrin, M., Rahaman, M. H., Alam, S. N., 2022. A review on experimental chemically modified activated carbon to enhance dye and heavy metals adsorption. Cleaner Engineering and Technology, 6, 100382.
  • Xu, Y., Luo, G., He, S., Deng, F., Pang, Q., Xu, Y., Yao, H., 2019. Efficient removal of elemental mercury by magnetic chlorinated biochars derived from co-pyrolysis of Fe (NO3) 3-laden wood and polyvinyl chloride waste. Fuel, 239, 982-990.
  • Tan, I., Ahmad, A., Hameed, B., 2008. Enhancement of basic dye adsorption uptake from aqueous solutions using chemically modified oil palm shell activated carbon. Colloids Surf. A Physicochem. Eng. Asp. 318, 88–96.
  • Yu, C., Fan, X., Yu, L., Bandosz, T. J., Zhao, Z., Qiu, J., 2013. Adsorptive removal of thiophenic compounds from oils by activated carbon modified with concentrated nitric acid. Energy & fuels, 27(3), 1499-1505.
  • Yu, H., Jin, Y., Li, Z., Peng, F., Wang, H., 2008. Synthesis and characterization of sulfonated single-walled carbon nanotubes and their performance as solid acid catalyst. Journal of Solid State Chemistry, 181(3), 432-438.
  • Zhou, Y., Li, W., Qi, W., Chen, S., Tan, Q., Wei, Z., Gong, L., Chen, J., Zhou, W., 2021. The comprehensive evaluation model and optimization selection of activated carbon in the O3-BAC treatment process. Journal of Water Process Engineering, 40, 101931.
There are 42 citations in total.

Details

Primary Language Turkish
Subjects Environmental Engineering
Journal Section Research Articles
Authors

Betül Aykut Şenel 0000-0003-3674-5525

Şehnaz Şule Kaplan Bekaroğlu 0000-0003-0917-7219

Nuray Ateş 0000-0002-8923-4852

Project Number 118Y402
Publication Date December 30, 2022
Submission Date June 1, 2022
Acceptance Date August 13, 2022
Published in Issue Year 2022 Volume: 10 Issue: 4

Cite

APA Aykut Şenel, B., Kaplan Bekaroğlu, Ş. Ş., & Ateş, N. (2022). TOZ AKTİF KARBONUN NİTRİK ASİT VE SÜLFONİK ASİT İLE KİMYASAL MODİFİKASYONU VE KARAKTERİZASYONU. Mühendislik Bilimleri Ve Tasarım Dergisi, 10(4), 1333-1340. https://doi.org/10.21923/jesd.1124539