Research Article
BibTex RIS Cite

KARBON NANOTÜPLERİN KARBONDİOKSİT TUTUCU OLARAK KULLANIMI ÜZERİNE BİR DEĞERLENDİRME

Year 2022, Volume: 10 Issue: 4, 1484 - 1494, 30.12.2022
https://doi.org/10.21923/jesd.852419

Abstract

Küresel ısınmaya sebep olan birincil antropojenik sera gazı olarak bilinen karbondioksit (CO2) emisyonlarının azaltılması için tüm dünyada pek çok araştırma yapılmaktadır. CO2’in tutulmasına yönelik olarak, yanma öncesi, yanma sonrası ve Oxy-yakıt yakım olmak üzere üç temel yaklaşım vardır. Adsorpsiyon, yanma öncesi ve sonrası kullanılabilen etkin bir CO2 yakalama yöntemidir. Ancak, CO2'nin havadan adsorbe edilmesi, baca gazı ve sentez gazı gibi yüksek CO2 konsantrasyonlu kaynaklar için hala bir sorundur. İlgili literatürün çoğu, daha yüksek adsorpsiyon kapasitesi ve daha düşük rejenerasyon enerjisi tüketimi için adsorbanların geliştirilmesine odaklanmaktadır. Bu çalışmalarda özellikle CO2 tutucu olarak farklı katı malzemelerin kullanımı üzerine yoğunlaşılmaktadır. Adsorban malzeme olarak karbon bazlı adsorbanlar, zeolitler, moleküler elekler, metal-organik çerçeveler kullanılmaktadır. Bu bağlamda, yapısal özellikleri ve zorlu ortamlara karşı yüksek dayanıklılığı nedeniyle CO2 adsorpsiyonu için karbonlu malzemeler tercih edilmektedir. Bu çalışmada da CO2 tutucular ile ilgili literatürde yapılmış çalışmalar irdelenmiş ve bunlar arasında yüksek adsorpsiyon ve dayanım özelliği ile birçok kompozit malzeme ile uygulama alanı olan karbon nanotüpün CO2 tutucu olarak kullanılabilirliği üzerinde durulmuştur.

Supporting Institution

ESKİŞEHİR TEKNİK ÜNİVERSİTESİ

Project Number

20ADP184

References

  • Aaron, D., Tsouris, C., 2005. A review – Separation of CO2 from flue gas. Separation Science and Technology, 40 (1-3), 321-348.
  • Abd, A.A., Naji, S.Z., Hashim, A.S., Othman, M.R., 2020. Carbon dioxide removal through physical adsorption using carbonaceous and non-carbonaceous adsorbents: A review. Journal of Environmental Chemical Engineering, 8(5), 104142.
  • Abdeen, Z., Mohammad, S. G., Mahmoud, M. S., 2015. Adsorption of Mn (II) ion on polyvinyl alcohol/chitosan dry blending from aqueous solution. Environmental Nanotechnology Monitoring & Management, 3, 1-9.
  • Açıkgöz, M. A., Sargın, O., Kara, Ş. M., 2012. Karbondioksit Emisyonunun Azaltılmasında Yeni Yaklaşımlar. Ekoloji 2012 Sempozyumu, 03-05 Mayıs 2012, 1-7.
  • Akgül, G., Varol, M., Erdem Ünşar, A., 2022. CO2 Derı̇şı̇mı̇nı̇n ve Azot Stresı̇nı̇n Chlorella Vulgarı̇s Mı̇kroalg Kültürünün CO2 Tutma Verı̇mı̇ne Etkı̇sı̇. Mühendislik Bilimleri ve Tasarım Dergisi, 10(2), 698-721.
  • Altınöz, E., Terzi, S., 2020. Karayollarında Üstyapı Tı̇pı̇nı̇n Karbon Ayak İzı̇ Etkı̇sı̇nı̇n Araştırılması. Mühendislik Bilimleri ve Tasarım Dergisi, 8(2), 451-459.
  • Ben-Mansour, R., Habib, M. A., Bamidele, O. E., Basha, M., Qasem, N. A. A., Peedikakkal, A., ... Ali M., 2016. A review–Carbon capture by physical adsorption: materials, experimental investigations and numerical modeling and simulations. Applied Energy, 161, 225-255.
  • Beton, İ., 2011. Zeytin Çekirdeğinden Üretilen Aktif Karbonda CO2 Adsorpsiyonunun İncelenmesi. Yayınlanmamış Yüksek Lisans Tezi. İstanbul Teknik Üniversitesi, Enerji Enstitüsü, Türkiye.
  • Chandra, V., Yu, S. U., Kim, S. H., Yoon, Y. S., Kim, D. Y., Kwon, A. H., ... Kim, K. S., 2012. Highly selective CO2 capture on N-doped carbon produced by chemical activation of polypyrrole functionalized graphene sheets. Chemical communications, 48 (5), 735-737.
  • Chiang, Y. C., Juang, R. S., 2017. A review – Surface modifications of carbonaceous materials for carbon dioxide adsorption. Journal of the Taiwan Institute of Chemical Engineers, 71, 214-234.
  • Choma, J., Osuchowski, L., Marszewski, M., Dziura, A., Jaroniec, M., 2016. Developing microporosity in Kevlar®-derived carbon fibers by CO2 activation for CO2 adsorption. Journal of CO2 Utilization, 16, 17-22.
  • Carruthers, J. D., Petruska, M. A., Sturm, E. A., Wilson, S. M., 2012. Molecular sieve carbons for CO2 capture. Microporous and Mesoporous Materials, 154, 62-67.
  • Chowdhury, S., Parshetti, G. K., Balasubramanian, R., 2015. Post-combustion CO2 capture using mesoporous TiO2/graphene oxide nanocomposites. Chemical Engineering Journal, 263, 374-384.
  • Çevre ve Şehircilik Bakanlığı, 2012. Türkiye’nin İklim Değişikliği Uyum Stratejisi ve Eylem Planı 2011–2023.
  • Dam M. M., 2014. Sera gazı emisyonlarının makroekonomik değişkenlerle ilişkisi: OECD ülkeleri için panel veri analizi. Yayınlanmamış Doktora Tezi, Adnan Menderes Üniversitesi, Aydın, Türkiye.
  • Dantas, T. L., Luna, F. T., Silva Jr, I. J., Torres, A. E., De Azevedo, D. C. S., Rodrigues, A. E., Moreira, R. F. P. M. 2011. Modeling of the fixed-bed adsorption of carbon dioxide and a carbon dioxide-nitrogen mixture on zeolite 13X. Brazilian Journal of Chemical Engineering, 28 (3), 533-544.
  • Dolgormaa A., Lv C. J., Li Y., Yang J., Yang J. X., Chen P., Wang H.P., Huang J., 2018. Adsorption of Cu (II) and Zn (II) ions from aqueous solution by gel/PVA-modified super-paramagnetic iron oxide nanoparticles. Molecules, 23(11), 2982.
  • Eskizybek, V., 2012. Yüzeylerine Kimyasal Olarak Karbon Nanotüpler Bağlanmış Örgü Cam Fiber/Epoksi Nanokompozitlerin Üretimi ve Tabakalar Arası Kırılma Davranışının İncelenmesi. Yayınlanmamış Doktora Tezi, Selçuk Üniversitesi, Konya, Türkiye.
  • Firdaus, R.M., Desforges, A., Mohamed, A.R., Vigolo, B., 2021. Progress in adsorption capacity of nanomaterials for carbon dioxide capture: A comparative study. Progress in adsorption capacity of nanomaterials for carbon dioxide capture: A comparative study. Jornal of Cleaner Production, 328, 129553.
  • Ghosh, S., Ramaprabhu, S., 2019. Green synthesis of transition metal nanocrystals encapsulated into nitrogen-doped carbon nanotubes for efficient carbon dioxide capture. Carbon, 141, 692-703.
  • Gui, M. M., Yap, Y. X., Chai, S. P., Mohamed, A. R., 2013. Multi-walled carbon nanotubes modified with (3-aminopropyl) triethoxysilane for effective carbon dioxide adsorption. International Journal of Greenhouse Gas Control, 14, 65-73.
  • Hsu, S. C., Lu, C., S F., Zeng, W., Chen, W., 2010. Thermodynamics and regeneration studies of CO2 adsorption on multiwalled carbon nanotubes. Chemical Engineering Science, 65 (4), 1354-1361.
  • Korkmaz, N., Çakak, E., Dayık, M., 2016. Dokuma Karbon Elyaf Takviyeli Karbon Nano Tüp-Epoksi Kompozit Malzemelerin Mekanik ve Termal Karakterizasyonu. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 20 (2), 338-353.
  • Köse, Ü., 2016. Karbon Nanotüp Esaslı Yüksek Performanslı Liflerin Üretim Yöntemleri, Mekanik ve Yapısal Özellikleri Ve Uygulama Alanları. Yayınlanmamış Yüksek Lisans Tezi, Erciyes Üniversitesi, Fen Bilimleri Enstitüsü, Kayseri, Türkiye.
  • Köysüren, H. N., Köysüren, Ö., 2018. Povinil alkol kompozit nanoliflerin hazırlanması ve katı-faz polivinil alkolün fotokatalitik bozunması. Journal of the Faculty of Engineering and Architecture of Gazi University, 33 (4), 1411-1418.
  • Lee, M. S., Lee, S. Y., Park, S., 2015. Preparation and characterization of multi-walled carbon nanotubes impregnated with polyethyleneimine for carbon dioxide capture. International Journal of Hydrogen Energy, 40, 3415-3421.
  • Li, L., Wang, Z., Ma, P., Bai, H., Dong, W., Chen, M., 2015. Preparation of polyvinyl alcohol/chitosan hydrogel compounded with graphene oxide to enhance the adsorption properties for Cu (II) in aqueous solution. Journal of Polymer Research, 22 (8), 150.
  • Lourenço, M.A.O., Fontana, M., Jagdale, P., Pirri, C.F., Bocchini, S., 2021. Improved CO2 adsorption properties through amine functionalization of multi-walled carbon nanotubes. Chemical Engineering Journal, 414, 128763.
  • Lu, C., Bai, H., Wu, B., Su, F., ve Hwang, J. F., 2008. Comparative Study of CO2 Capture by Carbon Nanotubes, Activated Carbons, and Zeolites. Energy & Fuels, 22, 3050-3056.
  • Mahdavinia, G. R., Massoudi, A., Baghban, A., Shokri, E., 2014. Study of adsorption of cationic dye on magnetic kappa-carrageenan/PVA nanocomposite hydrogels. Journal of Environmental Chemical Engineering, 2 (3), 1578-1587.
  • Maroto-Valer, M.M., Lu, Z., Zhang, Y., Tang, Z., 2008. Sorbents for CO2 capture from high carbon fly ashes. Waste Management, 28 (11), 2320-2328.
  • Osler, K., Twala, N., Oluwasina, O.O., Daramola, M.O., 2017. Synthesis and Performance Evaluation of Chitosan/Carbon Nanotube (Chitosan/MWCNT) Composite Adsorbent for Post-combustion Carbon Dioxide Capture. Energy Procedia, 114, 2330-2335.
  • Öner, G., Önal, H. Y., Pekbey, Y., 2017. Karbon nanotüp katkılı camlifi-epoksi kompozitlerin termal ve eğilme özelliklerinin araştırılması. DÜMF Mühendislik Dergisi, 8 (4), 805-816.
  • Özkutlu, M., 2014. İyonik Sıvı - Amin İkili Sisteminin CO2 Absorpsiyonu Kinetiği. Yayınlanmamış Yüksek Lisans Tezi, Hacettepe Üniversitesi, Fen Bilimleri Enstitüsü, Ankara, Türkiye.
  • Plaza, M. G., García, S., Rubiera, F., Pis J. J., Pevida, C., 2010. Post-combustion CO2 capture with a commercial activated carbon: comparison of different regeneration strategies. Chemical Engineering Journal, 163 (1-2), 41-47.
  • Qasem, N. A., Ben-Mansour, R., Habib, M. A., 2017. Enhancement of adsorption carbon capture capacity of 13X with optimal incorporation of carbon nanotubes. International Journal of Energy and Environmental Engineering, 8 (3), 219-230.
  • Rahimi, K., Riahi, S., Abbasi, M., Fakhroueian, Z., 2019. Modification of multi-walled carbon nanotubes by 1, 3-diaminopropane to increase CO2 adsorption capacity. Journal of Environmental Management, 242, 81-89.
  • Sevilla, M., Fuertes, A. B., 2011. Sustainable porous carbons with a superior performance for CO2 capture. Energy & Environmental Science, 4 (5), 1765-1771.
  • Sharma, H., Dhir, A., 2020. Capture of carbon dioxide using solid carbonaceous and non-carbonaceous adsorbents: a review. Environmental Chemistry Letters, 19, 851-873.
  • Shawky, H. A., El-Aassar, A.H.M., Abo-Zeid, D.E., 2011. Chitosan/Carbon Nanotube Composite Beads: Preparation, Characterization, and Cost Evaluation for Mercury Removal from Wastewater of Some Industrial Cities in Egypt. Journal of Applied Polymer Science, 125, E93–E101.
  • Shen, J., Huang, W., Wu, L., Hu, Y., Ye, M., 2007. Study on amino-functionalized multiwalled carbon nanotubes. Materials Science and Engineering, 464 (1-2), 151-156.
  • Shukrullah, S., Mohamed, N. M., Shaharun, M. S., Ullah, S., Naz, M. Y., 2016. Effective CO2 adsorption on pristine and chemically functionalized MWCNTs. In AIP Conference Proceedings, 1787 (1), 050025.
  • Sreńscek-Nazzal, J., Narkiewicz, U., Morawski, A. W., Wróbel, R. J., & Michalkiewicz, B. 2015. Comparison of optimized isotherm models and error functions for carbon dioxide adsorption on activated carbon. Journal of Chemical & Engineering Data, 60 (11) 3148-3158.
  • Su, F., Lu, C., Chen, H. S., 2011. Adsorption, desorption, and thermodynamic studies of CO2 with high-amine-loaded multiwalled carbon nanotubes. Langmuir, 27 (13), 8090-8098.
  • Sun, N., Sun, C., Liu, H., Liu, J., Stevens, L., Drage, T., ... Sun, Y., 2013. Synthesis, characterization and evaluation of activated spherical carbon materials for CO2 capture. Fuel, 113, 854-862.
  • Thote, J.A., Iyer, K.S., Chatti, R., Labhsetwar, N.K., Biniwale, R.B., Rayalu, S.S., 2010. In Situ Nitrogen Enriched Carbon for Carbon Dioxide Capture. Carbon, 48, 396-402.
  • Tiwari, D., Goel, C., Bhunia, H., Bajpai, P. K., 2017. Melamine-formaldehyde derived porous carbons for adsorption of CO2 capture. Journal of Environmental Management, 197, 415-427.
  • Wickramaratne, N. P., Jaroniec, M., 2013. Activated carbon spheres for CO2 adsorption. ACS Applied Materials & Interfaces, 5 (5), 1849-1855.
  • Wickramatne, N., Jaroniec, M., 2013. Importance of small micropores in CO2 capture by phenolic resin-based activated carbon spheres. Journal of Materials Chemistry A, 1, 112-116.
  • Yaumi, A. L., Bakar, M. A., Hameed, B. H., 2017. Recent advances in functionalized composite solid materials for carbon dioxide capture. Energy, 124, 461-480.
  • Yazaydın, A. O., Snurr, R. Q., Park, T. H., Koh, K., Liu, J., LeVan, M. D., ... Low, J. J., 2009. Screening of metal−organic frameworks for carbon dioxide capture from flue gas using a combined experimental and modeling approach. Journal of the American Chemical Society, 131 (51), 18198-18199.
  • Ye, Q., Jiang, J., Wang, C., Liu, Y., Pan, H., Shi, Y., 2012. Adsorption of low-concentration carbon dioxide on amine-modified carbon nanotubes at ambient temperature. Energy & Fuels, 26 (4), 2497-2504.
  • Yong, Z., Mata, V., Rodrigues, A. E., 2002. Adsorption of carbon dioxide at high temperature—a review. Separation and Purification Technology, 26 (2-3), 195-205.
  • Zainab, G., Iqbal, N., Babar, A. A., Huang, C., Wang, X., Yu, J., Ding, B., 2017. Free-standing, spider-web-like polyamide/carbon nanotube composite nanofibrous membrane impregnated with polyethyleneimine for CO2 capture. Composites Communications, 6, 41-47.
  • Zhou Z., Balijepalli S. K., Nguyen-Sorenson A. H., Anderson C. M., Park J. L., ve Stowers K. J., 2018. Steam-stable covalently bonded polyethylenimine modified multiwall carbon nanotubes for carbon dioxide capture. Energy & Fuels, 32(11), 11701-11709.
  • Zhou, Z., Wang, Z., Zuo, R., Zhou, Y., Cao, X., Cheng, K., 2012. The surface structure and chemical characters of activated carbon fibers modified by plasma. Asia-Pacific Journal of Chemical Engineering, 7(S2), 245-252.
  • Zohdi S., Anbia M., Salehi S., 2019. Improved CO2 adsorption capacity and CO2/CH4 and CO2/N2 selectivity in novel hollow silica particles by modification with multi-walled carbon nanotubes containing amine groups. Polyhedron, 166, 175-185.

AN EVALUATION ON THE USE OF CARBON NANOTUBES AS A CARBONDIOXIDE ADSORBER

Year 2022, Volume: 10 Issue: 4, 1484 - 1494, 30.12.2022
https://doi.org/10.21923/jesd.852419

Abstract

There are many types of researches all over the world to reduce carbon dioxide (CO2) emissions known as primary anthropogenic greenhouse gases causing global warming. There are three basic approaches to CO2 capture: pre-combustion, post-combustion and Oxy-fuel combustion. Adsorption is an effective CO2 capture method that can be used pre and post combustion. However, adsorbing CO2 from air is still a problem for sources with high CO2 concentrations such as flue gas and syngas. Much of the relevant literature focuses on the development of adsorbents for higher adsorption capacity and lower regeneration energy consumption. These studies focus especially on the use of different solid materials as CO2 adsorbents. Carbon-based adsorbents, zeolites, molecular sieves, metal-organic frameworks are used as adsorbent materials. In this context, carbon materials are preferred for CO2 adsorption due to their structural properties and high resistance to harsh environments. In this study, the studies conducted in the literature on CO2 traps have been examined and among them, the use of carbon nanotubes, which are preferred as adsorbents due to their high adsorption properties, and their application area, are used as CO2 adsorbers.

Project Number

20ADP184

References

  • Aaron, D., Tsouris, C., 2005. A review – Separation of CO2 from flue gas. Separation Science and Technology, 40 (1-3), 321-348.
  • Abd, A.A., Naji, S.Z., Hashim, A.S., Othman, M.R., 2020. Carbon dioxide removal through physical adsorption using carbonaceous and non-carbonaceous adsorbents: A review. Journal of Environmental Chemical Engineering, 8(5), 104142.
  • Abdeen, Z., Mohammad, S. G., Mahmoud, M. S., 2015. Adsorption of Mn (II) ion on polyvinyl alcohol/chitosan dry blending from aqueous solution. Environmental Nanotechnology Monitoring & Management, 3, 1-9.
  • Açıkgöz, M. A., Sargın, O., Kara, Ş. M., 2012. Karbondioksit Emisyonunun Azaltılmasında Yeni Yaklaşımlar. Ekoloji 2012 Sempozyumu, 03-05 Mayıs 2012, 1-7.
  • Akgül, G., Varol, M., Erdem Ünşar, A., 2022. CO2 Derı̇şı̇mı̇nı̇n ve Azot Stresı̇nı̇n Chlorella Vulgarı̇s Mı̇kroalg Kültürünün CO2 Tutma Verı̇mı̇ne Etkı̇sı̇. Mühendislik Bilimleri ve Tasarım Dergisi, 10(2), 698-721.
  • Altınöz, E., Terzi, S., 2020. Karayollarında Üstyapı Tı̇pı̇nı̇n Karbon Ayak İzı̇ Etkı̇sı̇nı̇n Araştırılması. Mühendislik Bilimleri ve Tasarım Dergisi, 8(2), 451-459.
  • Ben-Mansour, R., Habib, M. A., Bamidele, O. E., Basha, M., Qasem, N. A. A., Peedikakkal, A., ... Ali M., 2016. A review–Carbon capture by physical adsorption: materials, experimental investigations and numerical modeling and simulations. Applied Energy, 161, 225-255.
  • Beton, İ., 2011. Zeytin Çekirdeğinden Üretilen Aktif Karbonda CO2 Adsorpsiyonunun İncelenmesi. Yayınlanmamış Yüksek Lisans Tezi. İstanbul Teknik Üniversitesi, Enerji Enstitüsü, Türkiye.
  • Chandra, V., Yu, S. U., Kim, S. H., Yoon, Y. S., Kim, D. Y., Kwon, A. H., ... Kim, K. S., 2012. Highly selective CO2 capture on N-doped carbon produced by chemical activation of polypyrrole functionalized graphene sheets. Chemical communications, 48 (5), 735-737.
  • Chiang, Y. C., Juang, R. S., 2017. A review – Surface modifications of carbonaceous materials for carbon dioxide adsorption. Journal of the Taiwan Institute of Chemical Engineers, 71, 214-234.
  • Choma, J., Osuchowski, L., Marszewski, M., Dziura, A., Jaroniec, M., 2016. Developing microporosity in Kevlar®-derived carbon fibers by CO2 activation for CO2 adsorption. Journal of CO2 Utilization, 16, 17-22.
  • Carruthers, J. D., Petruska, M. A., Sturm, E. A., Wilson, S. M., 2012. Molecular sieve carbons for CO2 capture. Microporous and Mesoporous Materials, 154, 62-67.
  • Chowdhury, S., Parshetti, G. K., Balasubramanian, R., 2015. Post-combustion CO2 capture using mesoporous TiO2/graphene oxide nanocomposites. Chemical Engineering Journal, 263, 374-384.
  • Çevre ve Şehircilik Bakanlığı, 2012. Türkiye’nin İklim Değişikliği Uyum Stratejisi ve Eylem Planı 2011–2023.
  • Dam M. M., 2014. Sera gazı emisyonlarının makroekonomik değişkenlerle ilişkisi: OECD ülkeleri için panel veri analizi. Yayınlanmamış Doktora Tezi, Adnan Menderes Üniversitesi, Aydın, Türkiye.
  • Dantas, T. L., Luna, F. T., Silva Jr, I. J., Torres, A. E., De Azevedo, D. C. S., Rodrigues, A. E., Moreira, R. F. P. M. 2011. Modeling of the fixed-bed adsorption of carbon dioxide and a carbon dioxide-nitrogen mixture on zeolite 13X. Brazilian Journal of Chemical Engineering, 28 (3), 533-544.
  • Dolgormaa A., Lv C. J., Li Y., Yang J., Yang J. X., Chen P., Wang H.P., Huang J., 2018. Adsorption of Cu (II) and Zn (II) ions from aqueous solution by gel/PVA-modified super-paramagnetic iron oxide nanoparticles. Molecules, 23(11), 2982.
  • Eskizybek, V., 2012. Yüzeylerine Kimyasal Olarak Karbon Nanotüpler Bağlanmış Örgü Cam Fiber/Epoksi Nanokompozitlerin Üretimi ve Tabakalar Arası Kırılma Davranışının İncelenmesi. Yayınlanmamış Doktora Tezi, Selçuk Üniversitesi, Konya, Türkiye.
  • Firdaus, R.M., Desforges, A., Mohamed, A.R., Vigolo, B., 2021. Progress in adsorption capacity of nanomaterials for carbon dioxide capture: A comparative study. Progress in adsorption capacity of nanomaterials for carbon dioxide capture: A comparative study. Jornal of Cleaner Production, 328, 129553.
  • Ghosh, S., Ramaprabhu, S., 2019. Green synthesis of transition metal nanocrystals encapsulated into nitrogen-doped carbon nanotubes for efficient carbon dioxide capture. Carbon, 141, 692-703.
  • Gui, M. M., Yap, Y. X., Chai, S. P., Mohamed, A. R., 2013. Multi-walled carbon nanotubes modified with (3-aminopropyl) triethoxysilane for effective carbon dioxide adsorption. International Journal of Greenhouse Gas Control, 14, 65-73.
  • Hsu, S. C., Lu, C., S F., Zeng, W., Chen, W., 2010. Thermodynamics and regeneration studies of CO2 adsorption on multiwalled carbon nanotubes. Chemical Engineering Science, 65 (4), 1354-1361.
  • Korkmaz, N., Çakak, E., Dayık, M., 2016. Dokuma Karbon Elyaf Takviyeli Karbon Nano Tüp-Epoksi Kompozit Malzemelerin Mekanik ve Termal Karakterizasyonu. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 20 (2), 338-353.
  • Köse, Ü., 2016. Karbon Nanotüp Esaslı Yüksek Performanslı Liflerin Üretim Yöntemleri, Mekanik ve Yapısal Özellikleri Ve Uygulama Alanları. Yayınlanmamış Yüksek Lisans Tezi, Erciyes Üniversitesi, Fen Bilimleri Enstitüsü, Kayseri, Türkiye.
  • Köysüren, H. N., Köysüren, Ö., 2018. Povinil alkol kompozit nanoliflerin hazırlanması ve katı-faz polivinil alkolün fotokatalitik bozunması. Journal of the Faculty of Engineering and Architecture of Gazi University, 33 (4), 1411-1418.
  • Lee, M. S., Lee, S. Y., Park, S., 2015. Preparation and characterization of multi-walled carbon nanotubes impregnated with polyethyleneimine for carbon dioxide capture. International Journal of Hydrogen Energy, 40, 3415-3421.
  • Li, L., Wang, Z., Ma, P., Bai, H., Dong, W., Chen, M., 2015. Preparation of polyvinyl alcohol/chitosan hydrogel compounded with graphene oxide to enhance the adsorption properties for Cu (II) in aqueous solution. Journal of Polymer Research, 22 (8), 150.
  • Lourenço, M.A.O., Fontana, M., Jagdale, P., Pirri, C.F., Bocchini, S., 2021. Improved CO2 adsorption properties through amine functionalization of multi-walled carbon nanotubes. Chemical Engineering Journal, 414, 128763.
  • Lu, C., Bai, H., Wu, B., Su, F., ve Hwang, J. F., 2008. Comparative Study of CO2 Capture by Carbon Nanotubes, Activated Carbons, and Zeolites. Energy & Fuels, 22, 3050-3056.
  • Mahdavinia, G. R., Massoudi, A., Baghban, A., Shokri, E., 2014. Study of adsorption of cationic dye on magnetic kappa-carrageenan/PVA nanocomposite hydrogels. Journal of Environmental Chemical Engineering, 2 (3), 1578-1587.
  • Maroto-Valer, M.M., Lu, Z., Zhang, Y., Tang, Z., 2008. Sorbents for CO2 capture from high carbon fly ashes. Waste Management, 28 (11), 2320-2328.
  • Osler, K., Twala, N., Oluwasina, O.O., Daramola, M.O., 2017. Synthesis and Performance Evaluation of Chitosan/Carbon Nanotube (Chitosan/MWCNT) Composite Adsorbent for Post-combustion Carbon Dioxide Capture. Energy Procedia, 114, 2330-2335.
  • Öner, G., Önal, H. Y., Pekbey, Y., 2017. Karbon nanotüp katkılı camlifi-epoksi kompozitlerin termal ve eğilme özelliklerinin araştırılması. DÜMF Mühendislik Dergisi, 8 (4), 805-816.
  • Özkutlu, M., 2014. İyonik Sıvı - Amin İkili Sisteminin CO2 Absorpsiyonu Kinetiği. Yayınlanmamış Yüksek Lisans Tezi, Hacettepe Üniversitesi, Fen Bilimleri Enstitüsü, Ankara, Türkiye.
  • Plaza, M. G., García, S., Rubiera, F., Pis J. J., Pevida, C., 2010. Post-combustion CO2 capture with a commercial activated carbon: comparison of different regeneration strategies. Chemical Engineering Journal, 163 (1-2), 41-47.
  • Qasem, N. A., Ben-Mansour, R., Habib, M. A., 2017. Enhancement of adsorption carbon capture capacity of 13X with optimal incorporation of carbon nanotubes. International Journal of Energy and Environmental Engineering, 8 (3), 219-230.
  • Rahimi, K., Riahi, S., Abbasi, M., Fakhroueian, Z., 2019. Modification of multi-walled carbon nanotubes by 1, 3-diaminopropane to increase CO2 adsorption capacity. Journal of Environmental Management, 242, 81-89.
  • Sevilla, M., Fuertes, A. B., 2011. Sustainable porous carbons with a superior performance for CO2 capture. Energy & Environmental Science, 4 (5), 1765-1771.
  • Sharma, H., Dhir, A., 2020. Capture of carbon dioxide using solid carbonaceous and non-carbonaceous adsorbents: a review. Environmental Chemistry Letters, 19, 851-873.
  • Shawky, H. A., El-Aassar, A.H.M., Abo-Zeid, D.E., 2011. Chitosan/Carbon Nanotube Composite Beads: Preparation, Characterization, and Cost Evaluation for Mercury Removal from Wastewater of Some Industrial Cities in Egypt. Journal of Applied Polymer Science, 125, E93–E101.
  • Shen, J., Huang, W., Wu, L., Hu, Y., Ye, M., 2007. Study on amino-functionalized multiwalled carbon nanotubes. Materials Science and Engineering, 464 (1-2), 151-156.
  • Shukrullah, S., Mohamed, N. M., Shaharun, M. S., Ullah, S., Naz, M. Y., 2016. Effective CO2 adsorption on pristine and chemically functionalized MWCNTs. In AIP Conference Proceedings, 1787 (1), 050025.
  • Sreńscek-Nazzal, J., Narkiewicz, U., Morawski, A. W., Wróbel, R. J., & Michalkiewicz, B. 2015. Comparison of optimized isotherm models and error functions for carbon dioxide adsorption on activated carbon. Journal of Chemical & Engineering Data, 60 (11) 3148-3158.
  • Su, F., Lu, C., Chen, H. S., 2011. Adsorption, desorption, and thermodynamic studies of CO2 with high-amine-loaded multiwalled carbon nanotubes. Langmuir, 27 (13), 8090-8098.
  • Sun, N., Sun, C., Liu, H., Liu, J., Stevens, L., Drage, T., ... Sun, Y., 2013. Synthesis, characterization and evaluation of activated spherical carbon materials for CO2 capture. Fuel, 113, 854-862.
  • Thote, J.A., Iyer, K.S., Chatti, R., Labhsetwar, N.K., Biniwale, R.B., Rayalu, S.S., 2010. In Situ Nitrogen Enriched Carbon for Carbon Dioxide Capture. Carbon, 48, 396-402.
  • Tiwari, D., Goel, C., Bhunia, H., Bajpai, P. K., 2017. Melamine-formaldehyde derived porous carbons for adsorption of CO2 capture. Journal of Environmental Management, 197, 415-427.
  • Wickramaratne, N. P., Jaroniec, M., 2013. Activated carbon spheres for CO2 adsorption. ACS Applied Materials & Interfaces, 5 (5), 1849-1855.
  • Wickramatne, N., Jaroniec, M., 2013. Importance of small micropores in CO2 capture by phenolic resin-based activated carbon spheres. Journal of Materials Chemistry A, 1, 112-116.
  • Yaumi, A. L., Bakar, M. A., Hameed, B. H., 2017. Recent advances in functionalized composite solid materials for carbon dioxide capture. Energy, 124, 461-480.
  • Yazaydın, A. O., Snurr, R. Q., Park, T. H., Koh, K., Liu, J., LeVan, M. D., ... Low, J. J., 2009. Screening of metal−organic frameworks for carbon dioxide capture from flue gas using a combined experimental and modeling approach. Journal of the American Chemical Society, 131 (51), 18198-18199.
  • Ye, Q., Jiang, J., Wang, C., Liu, Y., Pan, H., Shi, Y., 2012. Adsorption of low-concentration carbon dioxide on amine-modified carbon nanotubes at ambient temperature. Energy & Fuels, 26 (4), 2497-2504.
  • Yong, Z., Mata, V., Rodrigues, A. E., 2002. Adsorption of carbon dioxide at high temperature—a review. Separation and Purification Technology, 26 (2-3), 195-205.
  • Zainab, G., Iqbal, N., Babar, A. A., Huang, C., Wang, X., Yu, J., Ding, B., 2017. Free-standing, spider-web-like polyamide/carbon nanotube composite nanofibrous membrane impregnated with polyethyleneimine for CO2 capture. Composites Communications, 6, 41-47.
  • Zhou Z., Balijepalli S. K., Nguyen-Sorenson A. H., Anderson C. M., Park J. L., ve Stowers K. J., 2018. Steam-stable covalently bonded polyethylenimine modified multiwall carbon nanotubes for carbon dioxide capture. Energy & Fuels, 32(11), 11701-11709.
  • Zhou, Z., Wang, Z., Zuo, R., Zhou, Y., Cao, X., Cheng, K., 2012. The surface structure and chemical characters of activated carbon fibers modified by plasma. Asia-Pacific Journal of Chemical Engineering, 7(S2), 245-252.
  • Zohdi S., Anbia M., Salehi S., 2019. Improved CO2 adsorption capacity and CO2/CH4 and CO2/N2 selectivity in novel hollow silica particles by modification with multi-walled carbon nanotubes containing amine groups. Polyhedron, 166, 175-185.
There are 57 citations in total.

Details

Primary Language Turkish
Subjects Environmental Engineering
Journal Section Review Articles
Authors

Aysun Özkan 0000-0003-1036-7570

Gamze Yılmaz 0000-0003-0953-2399

Zerrin Günkaya 0000-0002-7553-9129

Mufide Banar 0000-0003-2795-6208

Project Number 20ADP184
Publication Date December 30, 2022
Submission Date January 2, 2021
Acceptance Date July 25, 2022
Published in Issue Year 2022 Volume: 10 Issue: 4

Cite

APA Özkan, A., Yılmaz, G., Günkaya, Z., Banar, M. (2022). KARBON NANOTÜPLERİN KARBONDİOKSİT TUTUCU OLARAK KULLANIMI ÜZERİNE BİR DEĞERLENDİRME. Mühendislik Bilimleri Ve Tasarım Dergisi, 10(4), 1484-1494. https://doi.org/10.21923/jesd.852419