Research Article
BibTex RIS Cite

AN INVESTIGATION OF THE EFFECT OF OPERATION MODES ON EFFICIENCY IN MULTIPHASE MICROCONTROLLER BASED SYNCHRONOUS BUCK CONVERTER

Year 2023, Volume: 11 Issue: 1, 254 - 263, 27.03.2023
https://doi.org/10.21923/jesd.1146815

Abstract

Recently, it has become important to use energy efficiently due to the rapidly increasing energy consumption and the decrease in energy resources. Today, most of the electronic devices such as cars, mobile phones, heater units, battery chargers, LED drivers have power converters inside. In this work, a study has been carried out to increase the efficiency of the multi-phase synchronous buck converter circuit. Four identical synchronous buck converters are used in the circuit. The control of the circuit is made with the help of microcontroller. Efficiency values were examined for two operating modes, fixed and variable. At the same time, efficiency values were determined for the change of active phase number, switching frequency and load current parameters of the circuit. After examining the values and operating points of the measurements taken and determining the optimum operating condition for each load situation, the number of active phases in variable load condition and the switching frequency to be operated are decided by adding them to the control algorithm. Thus, it is ensured that the circuit operates at maximum efficiency under all load conditions without using additional elements in the circuit and without increasing the circuit cost.

References

  • Abe, K., Nishijima, K., Harada, K., Nakano, T., Nabeshima, T., & Sato, T., 2007. A novel multi-phase buck converter for lap-top pc. Power Conversion Conference-Nagoya, 885-891.
  • Chang, R. C. H., Chen, W. C., & Huang, J. K. S., 2019. A 93.4% efficiency 8-mV offset voltage constant on-time buck converter with an offset cancellation technique. IEEE transactions on circuits and systems II: express briefs, 67 (10), 2069-2073.
  • Erfidan, T., & Coruh, N., 2009. Microcontroller based soft-switched buck converter. 4th IEEE Conference on Industrial Electronics and Applications, 1381-1385.
  • Haque, M. R., Das, S., Uddin, M. R., Leon, M. S. I., & Razzak, M. A., 2020. Performance Evaluation of 1kW Asynchronous and Synchronous Buck Converter-based Solar-powered Battery Charging System for Electric Vehicles. IEEE Region 10 Symposium, 770-773.
  • Haque, M. R., Eka, S. Z., Ferdous, S., & Razzak, M. A., 2021. Analysis of Loss Profile and Thermal Distribution of Heat Sink of IGBT-Based Asynchronous and Synchronous Buck Converters for EV Charging System. 5th International Conference on Electronics, Materials Engineering & Nano-Technology, 1-6.
  • Huang, X., Lee, F. C., Li, Q., & Du, W., 2015. High-frequency high-efficiency GaN-based interleaved CRM bidirectional buck/boost converter with inverse coupled inductor. IEEE Transactions on Power Electronics, 31 (6), 4343-4352.
  • Kim, J. H., Lim, J. G., Chung, S. K., & Song, Y. J., 2009. DSP-based digital controller for multi-phase synchronous buck converters. Journal of Power Electronics, 9(3), 410-417.
  • Koran, A., LaBella, T., & Lai, J. S. 2013. High efficiency photovoltaic source simulator with fast response time for solar power conditioning systems evaluation. IEEE Transactions on Power Electronics, 29 (3), 1285-1297.
  • Koutroulis, E., Kalaitzakis, K., & Voulgaris, N. C., 2001. Development of a microcontroller-based, photovoltaic maximum power point tracking control system. IEEE Transactions on power electronics, 16(1), 46-54.
  • Kroics, K., 2013. Digital control of variable frequency interleaved DC-DC converter. Proceedings of the International Scientific and Practical Conference, pp. 124-129.
  • Kumar, S., & Thakura, P., 2017. Microcontroller based DC-DC Cascode Buck-Boost Converter. Third International Conference on Advances in Electrical, Electronics, Information, Communication and Bio-Informatics, 289-294.
  • Li, Q. M., 2003. A low-cost configurable PWM controller using programmable system-on-chip. 34th Annual Conference on Power Electronics Specialist, 3, 1169-1174.
  • Morais, V., & Martins, A., 2022. Modelling, Analysis and Control of Multiphase Synchronous Buck Converters. Journal of Electrical Systems, 18 (1), 132-149.
  • Nagaraja, H. N., Kastha, D., & Petra, A. (2010). Design principles of a symmetrically coupled inductor structure for multiphase synchronous buck converters. IEEE Transactions on Industrial Electronics, 58(3), 988-997.
  • Parisi, C., 2021. Multiphase Buck Design from Start to Finish (Part 1) Application Report. Texas Instruments.
  • Piispanen, S., 2019. SIMPLIS efficiency model for a synchronous multiphase buck converter. Yüksek Lisans Tezi, Tampere Üniversitesi, Finlandiya.
  • Prasad, S.A.H., Kariyappa, B. S., Nagaraj, R., & Thakur S. K., 2009. Micro Controller Based Ac Power Controller. Wireless Sensor Network, 2, 61-121.
  • Sanchez, J., & Canton, M. P., 2009. Microcontroller Programming the microchip pic, 1st edition.
  • Shen, W., Renken, F., & Lascu, D., 2020. A New Multiphase ZVT-PWM Synchronous Buck Converter. International Symposium on Electronics and Telecommunications, 1-4.
  • Stephens, K. P., 2021. Multiphase Buck Converter Implementing Gallium Nitride Semiconductors. Bitirme Projesi Sonuç Raporu, California Politeknik Eyalet Üniversitesi, ABD.
  • Talebian, I., Alavi, P., Marzang, V., Babaei, E., & Khoshkbar-Sadigh, A., 2021. Analysis, Design, and Investigation of a Soft-Switched Buck Converter with High Efficiency. IEEE Transactions on Power Electronics, 37 (6), 6899-6912.
  • Texas Instruments, 2019. TPS56339Datasheet, SLVSEI2A.
  • Texas Instruments, 2021. LM2596 Datasheet, SNVS124F.
  • Tutaev, G., Bobrov, M., Fedotov, Y., Dubov, N., & Artamonov, V., 2019. Research of IGBTs Thermal Modes in Power Converters. International Conference on Control Systems, Mathematical Modelling, Automation and Energy Efficiency, 478-481.
  • Varghese, M., Manjunatha, A., & Snehaprabha, T., 2021. Method for improving ripple reduction during phase shedding in multiphase buck converters for SCADA systems. Indonesian Journal of Electrical Engineering and Computer Science, 24 (1), 29-36.
  • Viswanatha V., & Venkata S. R. R., 2018. Microcontroller based bidirectional buck–boost converter for photo-voltaic power plant. Journal of Electrical Systems and Information Technology, 5 (3), 745-758.
  • Wentzel, A., Hilt, O., Würfl, J., & Heinrich, W., 2020. A highly efficient GHz switching GaN-based synchronous buck converter module. International Journal of Microwave and Wireless Technologies, 12 (10), 945-953.
  • World Energy & Climate Statistics, 2022. World Consumption Statistics, Yearbook.
  • Yıldız, B., Gülbahçe, M. O., & Kocabaş, D. A., 2016. Nonideal Analysis and Voltage Mode Control of a Synchronous Buck Converter. Elektrik-Elektronik-Bilgisayar Mühendisliği Sempozyumu, 392-396.

ÇOK FAZLI MİKRODENETLEYİCİ TABANLI SENKRON DÜŞÜRÜCÜ DÖNÜŞTÜRÜCÜDE ÇALIŞMA MODLARININ VERİME ETKİSİNİN İNCELENMESİ

Year 2023, Volume: 11 Issue: 1, 254 - 263, 27.03.2023
https://doi.org/10.21923/jesd.1146815

Abstract

Son zamanlarda hızla artan enerji tüketimi ve enerji kaynaklarının azalması nedeniyle enerjiyi verimli kullanmak önemli hale gelmiştir. Günümüzde arabalar, cep telefonları, ısıtıcı üniteler, akü şarj cihazları, LED sürücüleri gibi elektronik cihazların çoğunun içinde güç dönüştürücüleri bulunmaktadır. Bu çalışmada, çok fazlı senkron düşürücü dönüştürücü devresinin verimini artırmak için bir çalışma yapılmıştır. Devrede birbirine eş dört adet senkron düşürücü dönüştürücü kullanılmıştır. Devrenin kontrolü mikrodenetleyici yardımı ile yapılmıştır. Sabit ve değişken olmak üzere iki çalışma modu için verim değerleri incelenmiştir. Devrede aynı zamanda aktif faz sayısı, anahtarlama frekansı ve yük akımı parametrelerinin değişmesi durumunda verim değerleri tespit edilmiştir. Alınan ölçümlerin değerleri ve çalışma noktaları incelendikten ve her bir yük durumu için optimum çalışma koşulu belirlendikten sonra, kontrol algoritmasına eklenerek değişken yük durumda aktif faz sayısı ve çalışılacak anahtarlama frekansına karar verilmiştir. Böylece devrede ilave eleman kullanmadan ve devre maliyetini arttırmadan devrenin tüm yük koşulları altında maksimum verimde çalışması sağlanmıştır.

References

  • Abe, K., Nishijima, K., Harada, K., Nakano, T., Nabeshima, T., & Sato, T., 2007. A novel multi-phase buck converter for lap-top pc. Power Conversion Conference-Nagoya, 885-891.
  • Chang, R. C. H., Chen, W. C., & Huang, J. K. S., 2019. A 93.4% efficiency 8-mV offset voltage constant on-time buck converter with an offset cancellation technique. IEEE transactions on circuits and systems II: express briefs, 67 (10), 2069-2073.
  • Erfidan, T., & Coruh, N., 2009. Microcontroller based soft-switched buck converter. 4th IEEE Conference on Industrial Electronics and Applications, 1381-1385.
  • Haque, M. R., Das, S., Uddin, M. R., Leon, M. S. I., & Razzak, M. A., 2020. Performance Evaluation of 1kW Asynchronous and Synchronous Buck Converter-based Solar-powered Battery Charging System for Electric Vehicles. IEEE Region 10 Symposium, 770-773.
  • Haque, M. R., Eka, S. Z., Ferdous, S., & Razzak, M. A., 2021. Analysis of Loss Profile and Thermal Distribution of Heat Sink of IGBT-Based Asynchronous and Synchronous Buck Converters for EV Charging System. 5th International Conference on Electronics, Materials Engineering & Nano-Technology, 1-6.
  • Huang, X., Lee, F. C., Li, Q., & Du, W., 2015. High-frequency high-efficiency GaN-based interleaved CRM bidirectional buck/boost converter with inverse coupled inductor. IEEE Transactions on Power Electronics, 31 (6), 4343-4352.
  • Kim, J. H., Lim, J. G., Chung, S. K., & Song, Y. J., 2009. DSP-based digital controller for multi-phase synchronous buck converters. Journal of Power Electronics, 9(3), 410-417.
  • Koran, A., LaBella, T., & Lai, J. S. 2013. High efficiency photovoltaic source simulator with fast response time for solar power conditioning systems evaluation. IEEE Transactions on Power Electronics, 29 (3), 1285-1297.
  • Koutroulis, E., Kalaitzakis, K., & Voulgaris, N. C., 2001. Development of a microcontroller-based, photovoltaic maximum power point tracking control system. IEEE Transactions on power electronics, 16(1), 46-54.
  • Kroics, K., 2013. Digital control of variable frequency interleaved DC-DC converter. Proceedings of the International Scientific and Practical Conference, pp. 124-129.
  • Kumar, S., & Thakura, P., 2017. Microcontroller based DC-DC Cascode Buck-Boost Converter. Third International Conference on Advances in Electrical, Electronics, Information, Communication and Bio-Informatics, 289-294.
  • Li, Q. M., 2003. A low-cost configurable PWM controller using programmable system-on-chip. 34th Annual Conference on Power Electronics Specialist, 3, 1169-1174.
  • Morais, V., & Martins, A., 2022. Modelling, Analysis and Control of Multiphase Synchronous Buck Converters. Journal of Electrical Systems, 18 (1), 132-149.
  • Nagaraja, H. N., Kastha, D., & Petra, A. (2010). Design principles of a symmetrically coupled inductor structure for multiphase synchronous buck converters. IEEE Transactions on Industrial Electronics, 58(3), 988-997.
  • Parisi, C., 2021. Multiphase Buck Design from Start to Finish (Part 1) Application Report. Texas Instruments.
  • Piispanen, S., 2019. SIMPLIS efficiency model for a synchronous multiphase buck converter. Yüksek Lisans Tezi, Tampere Üniversitesi, Finlandiya.
  • Prasad, S.A.H., Kariyappa, B. S., Nagaraj, R., & Thakur S. K., 2009. Micro Controller Based Ac Power Controller. Wireless Sensor Network, 2, 61-121.
  • Sanchez, J., & Canton, M. P., 2009. Microcontroller Programming the microchip pic, 1st edition.
  • Shen, W., Renken, F., & Lascu, D., 2020. A New Multiphase ZVT-PWM Synchronous Buck Converter. International Symposium on Electronics and Telecommunications, 1-4.
  • Stephens, K. P., 2021. Multiphase Buck Converter Implementing Gallium Nitride Semiconductors. Bitirme Projesi Sonuç Raporu, California Politeknik Eyalet Üniversitesi, ABD.
  • Talebian, I., Alavi, P., Marzang, V., Babaei, E., & Khoshkbar-Sadigh, A., 2021. Analysis, Design, and Investigation of a Soft-Switched Buck Converter with High Efficiency. IEEE Transactions on Power Electronics, 37 (6), 6899-6912.
  • Texas Instruments, 2019. TPS56339Datasheet, SLVSEI2A.
  • Texas Instruments, 2021. LM2596 Datasheet, SNVS124F.
  • Tutaev, G., Bobrov, M., Fedotov, Y., Dubov, N., & Artamonov, V., 2019. Research of IGBTs Thermal Modes in Power Converters. International Conference on Control Systems, Mathematical Modelling, Automation and Energy Efficiency, 478-481.
  • Varghese, M., Manjunatha, A., & Snehaprabha, T., 2021. Method for improving ripple reduction during phase shedding in multiphase buck converters for SCADA systems. Indonesian Journal of Electrical Engineering and Computer Science, 24 (1), 29-36.
  • Viswanatha V., & Venkata S. R. R., 2018. Microcontroller based bidirectional buck–boost converter for photo-voltaic power plant. Journal of Electrical Systems and Information Technology, 5 (3), 745-758.
  • Wentzel, A., Hilt, O., Würfl, J., & Heinrich, W., 2020. A highly efficient GHz switching GaN-based synchronous buck converter module. International Journal of Microwave and Wireless Technologies, 12 (10), 945-953.
  • World Energy & Climate Statistics, 2022. World Consumption Statistics, Yearbook.
  • Yıldız, B., Gülbahçe, M. O., & Kocabaş, D. A., 2016. Nonideal Analysis and Voltage Mode Control of a Synchronous Buck Converter. Elektrik-Elektronik-Bilgisayar Mühendisliği Sempozyumu, 392-396.
There are 29 citations in total.

Details

Primary Language Turkish
Subjects Electrical Engineering
Journal Section Research Articles
Authors

Barış Yener This is me 0000-0002-5783-0377

Nihan Altıntaş 0000-0002-6567-7675

Publication Date March 27, 2023
Submission Date July 21, 2022
Acceptance Date November 7, 2022
Published in Issue Year 2023 Volume: 11 Issue: 1

Cite

APA Yener, B., & Altıntaş, N. (2023). ÇOK FAZLI MİKRODENETLEYİCİ TABANLI SENKRON DÜŞÜRÜCÜ DÖNÜŞTÜRÜCÜDE ÇALIŞMA MODLARININ VERİME ETKİSİNİN İNCELENMESİ. Mühendislik Bilimleri Ve Tasarım Dergisi, 11(1), 254-263. https://doi.org/10.21923/jesd.1146815