Research Article
BibTex RIS Cite

KÜÇÜK ÖLÇEKLİ, TEK EKLEMLİ MANYETİK SARKAÇ MEKANİZMASININ BİLGİSAYAR DESTEKLİ BENZETİMİ VE PID KONTROLÜ

Year 2024, Volume: 12 Issue: 1, 75 - 87, 25.03.2024
https://doi.org/10.21923/jesd.1318257

Abstract

Sağlık ve biyomedikal cihaz teknolojileri günümüzün en önemli konuları arasında yer almaktadır. Son yıllarda teknolojide yaşanan gelişmeler ile birlikte, mikro ve makro ölçekli robotik sistemlerinin ilaç dozajlama, hücre ve DNA dizilimi oluşturma, görüntüleme ve bölgesel müdahale sistemi olarak geliştirilmesi üzerine çalışmalar ön plana çıkmaktadır. Çalışmada küçük ölçekli sistemlerde nesne taşıma, konum manipülasyonu vb. işlemlerde kullanılmak üzere doğrudan manyetik alan ile kontrol edilebilen tek serbestlik dereceli bir robot kol mekanizması(sarkaç) önerilmiştir. Sistemi yöneten elektrik ve mekanik denklem sistemi çıkartılmış, PID kontrolcü tasarımı yapılmıştır. Manyetik kuvvetlerin doğrusal olmayan davranışı nedeni ile Ziegler-Nichols metodları ile kontrolcü parametrelerinin belirlenemediği görülmüştür. PID kontrolcü parametreleri iteratif metodlar kullanılarak optimize edilerek elde edilmiştir. İterasyon algoritması 7 iterasyon sonucunda -0.1788 Aşma, 0.1634 Yerleşme ve 0.0298 mutlak hata ortalaması ile en iyi sonuşlara ulaşmıştır. Ulaşılan PID parametreleri ise kp=5.353, kd=0.2157 ve ki=21.5987’dir. Farklı dalga formlarında (basamak, üşgen ve sinüzoidal) kontrolcü davranışı incelenmiştir. Sistemde oluşan hatalar, kontrolcü gerilim çıkışı ve devrede oluşan akımlar görselleştirilerek detaylandırılmıştır. Çalışmada, 20A akım ile önerilen sarkaç modelinde pozisyon kontrolünün yapılabileceği gösterilmiştir.

References

  • Alba, E., Dorronsoro, B., 2005. The Exploration/Exploitation Tradeoff in Dynamic Cellular Genetic Algorithms. IEEE, Transactions on Evolutionary Computation, 9, 26-142. https://doi.org/10.1109/TEVC.2005.843751
  • Altınel, İ.K., Öncan, T., 2005. A New Enhancement of the Clarke and Wright Savings Heuristic for the Capacitated Vehicle Routing Problem. Journal of the Operational Research Society, 56 (8), 954-961. https://doi.org/10.1057/palgrave.jors.2601916
  • Goldberg, D., 1989. Genetic Algorithms in Search, Optimization and Machine Learning. Reading, Boston: MA: Addison-Wesley Professional.
  • Jaszkiewicz, A., Ishibuchi, H., Zhang, Q., 2012. Multiobjective Memetic Algorithms. F. Neri, C. Cotta, P. Moscato (Edt.), Handbook of Memetic Algorithms, içinde (s. 201-217). Berlin: Springer-Verlag, Berlin Heidelberg.
  • Zhang, H., Liu, B., 2009. A New Genetic Algorithm for Order-Picking of Irregular Warehouse. International Conference on Environmental Science and Information Application Technology, 1, 121-124. https://doi.org/10.1109/ESIAT.2009.131
  • Abbes, M., Belharet, K., Souissi, M., Mekki, H., & Poisson, G., 2023. Design of a Robotized Magnetic Platform for Targeted Drug Delivery in the Cochlea. IRBM, 44(1), 100728. https://doi.org/10.1016/j.irbm.2022.06.003
  • Al-Mdallal, Q. M., Syam, M. I., & Anwar, M. N., 2010. A collocation-shooting method for solving fractional boundary value problems. Communications in Nonlinear Science and Numerical Simulation, 15(12), 3814-3822. https://doi.org/10.1016/j.cnsns.2010.01.020
  • Zheng, B., Li, C. Y., Huang, S., Zhang, Z. L., Wu, Q. S., Pang, D. W., & Tang, H. W., 2022. Optical tweezers assisted analyzing and sorting of tumor cells tagged with fluorescence nanospheres in a microfluidic chip, Sensors and Actuators B: Chemical, Volume 368, 2022, 132173, ISSN 0925-4005, https://doi.org/10.1016/j.snb.2022.132173.
  • Ceylan, H., Giltinan, J., Kozielski, K., & Sitti, M., 2017. Mobile microrobots for bioengineering applications. Lab on a Chip, 17(10), 1705-1724. https://doi.org/10.1039/C7LC00064B
  • Fang, L., Vandewalle, S., & Meyers, J., 2023. An SQP-based multiple shooting algorithm for large-scale PDE-constrained optimal control problems. Journal of Computational Physics, 477, 111927. https://doi.org/10.1016/j.jcp.2023.111927
  • Ha, S. N., 2001. A nonlinear shooting method for two-point boundary value problems. Computers & Mathematics with Applications, 42(10-11), 1411-1420. https://doi.org/10.1016/S0898-1221(01)00250-4
  • He, C.-H., Amer, T. S., Tian, D., Abolila, A. F., & Galal, A. A., 2022. Controlling the kinematics of a spring-pendulum system using an energy harvesting device. Journal of Low Frequency Noise, Vibration and Active Control, 41(3), 1234-1257. https://doi.org/10.1177/14613484221077474
  • Jia, Y., Zhu, Z., Jing, X., Lin, J., & Lu, M., 2023. Fabrication and performance evaluation of magnetically driven double curved conical ribbon micro-helical robot. Materials & Design, 226, 111651. https://doi.org/10.1016/j.matdes.2023.111651 Koleoso, M., Feng, X., Xue, Y., Li, Q., Munshi, T., & Chen, X., 2020. Micro/nanoscale magnetic robots for biomedical applications. Materials Today Bio, 8, 100085. https://doi.org/10.1016/j.mtbio.2020.100085
  • Lu, Y., Li, L., Hu, N., Pan, Y., & Ren, C., 2015. Measurement Method of Magnetic Field for the Wire Suspended Micro-Pendulum Accelerometer. Sensors, 15(4), 8527-8539. https://doi.org/10.3390/s150408527 Magdanz, V., Khalil, I. S. M., Simmchen, J., Furtado, G. P., Mohanty, S., Gebauer, J., Xu, H., Klingner, A., Aziz, A., Medina-Sánchez, M., Schmidt, O. G., & Misra, S., 2020. IRONSperm: Sperm-templated soft magnetic microrobots. Science Advances, 6(28), eaba5855. https://doi.org/10.1126/sciadv.aba5855
  • Mashimo, T., & Oba, Y., 2022. Performance improvement of micro-ultrasonic motors using the thickness shear mode piezoelectric elements. Sensors and Actuators A: Physical, 335, 113347. https://doi.org/10.1016/j.sna.2021.113347
  • Morrison, D. D., Riley, J. D., & Zancanaro, J. F., 1962. Multiple shooting method for two-point boundary value problems. Communications of the ACM, 5(12), 613-614. https://doi.org/10.1145/355580.369128 Nana, B., Yamgoué, S. B., Tchitnga, R., & Woafo, P., 2017. Dynamics of a pendulum driven by a DC motor and magnetically controlled. Chaos, Solitons & Fractals, 104, 18-27. https://doi.org/10.1016/j.chaos.2017.07.027
  • Osborne, M. R., 1969. On shooting methods for boundary value problems. Journal of mathematical analysis and applications, 27(2), 417-433. Özbey, A. Uzal, E. Yıldız, H. Mutlu, A., 2014. Control of a Robot Arm Using Magnetic Forces. Numerical Methods for scientific Computations and Advanced applications., Bansko, Bulgaria.
  • Silva, F., Batista, J., Souza, D., Lima, A., Dos Reis, L., & Barbosa, A., 2023. Control and identification of parameters of a joint of a manipulator based on PID, PID 2-DOF, and least squares. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 45(6), 327. https://doi.org/10.1007/s40430-023-04251-5. Vo-Duy, T., & Ta, M. C., 2023. Fundamental design of electric motor control systems. Içinde Encyclopedia of Electrical and Electronic Power Engineering (ss. 428-453). Elsevier. https://doi.org/10.1016/B978-0-12-821204-2.00054-4
  • Yang, W., Wang, Z., Wang, X., Chen, Y., Ge, Z., & Yu, H., 2023. Bio-inspired propeller robot with controllable pitch driven by magnetic and optical coupling field. Sensors and Actuators B: Chemical, 382, 133509. https://doi.org/10.1016/j.snb.2023.133509
  • Yang, Y., Wang, H., 2013, Perspectives of nanotechnology in minimally invasive therapy of breast cancer, J. Healthc. Eng., 4 (1) (2013), pp. 67-86, 10.1260/2040-2295.4.1.67. https://doi.org/10.1260/2040-2295.4.1.67
  • Yildiz, H., Korkmaz Can, N., Ozguney, O. C., & Yagiz, N., 2020. Sliding mode control of a line following robot. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 42(11), 561. https://doi.org/10.1007/s40430-020-02645-3
  • Yilmaz, S., Toker, O., Arslan, N., & Sedef, H., 2012. Optimal in vitro realization of pulsatile coronary artery flow waveforms using closed-loop feedback algorithms with multiple flow control devices. Turkish Journal of Electrical Engineering and Computer Sciences, 20(6), 1006-1030. https://doi.org/10.3906/elk-1101-1024

COMPUTER AIDED SIMULATION AND PID CONTROL OF A SMALL SCALE SINGLE DOF MAGNETIC PENDULUM MECHANISM

Year 2024, Volume: 12 Issue: 1, 75 - 87, 25.03.2024
https://doi.org/10.21923/jesd.1318257

Abstract

Health and biomedical device technologies are among the most important issues of today. With the developments in technology in recent years, studies on the development of micro and macro-scale robotic systems such as drug dosing, cell and DNA sequencing, imaging and regional intervention systems have become more important. In this study, a single-degree-of-freedom robotic arm mechanism (pendulum) that can be directly controlled by a magnetic field is proposed to be used in small-scale systems for object handling, position manipulation, etc. The electrical and mechanical equations governing the system are obtained and a PID controller is designed. It is found that the controller parameters cannot be determined by Ziegler-Nichols methods due to the chaotic behavior of the magnetic forces. PID controller parameters were obtained by optimization using iterative methods. The best results were obtained after 7 iterations with -0.1788 overshoot, 0.1634 settling time and 0.0298 mean square error. The PID parameters obtained are kp=5.353, kd=0.2157 and ki=21.5987. The controller behavior for different reference inputs (step, triangular and sinusoidal) was investigated. Errors in the system, controller voltage output and currents in the circuit are visualized and presented. It is observed that position control can be performed in the proposed pendulum model with 20A current.

References

  • Alba, E., Dorronsoro, B., 2005. The Exploration/Exploitation Tradeoff in Dynamic Cellular Genetic Algorithms. IEEE, Transactions on Evolutionary Computation, 9, 26-142. https://doi.org/10.1109/TEVC.2005.843751
  • Altınel, İ.K., Öncan, T., 2005. A New Enhancement of the Clarke and Wright Savings Heuristic for the Capacitated Vehicle Routing Problem. Journal of the Operational Research Society, 56 (8), 954-961. https://doi.org/10.1057/palgrave.jors.2601916
  • Goldberg, D., 1989. Genetic Algorithms in Search, Optimization and Machine Learning. Reading, Boston: MA: Addison-Wesley Professional.
  • Jaszkiewicz, A., Ishibuchi, H., Zhang, Q., 2012. Multiobjective Memetic Algorithms. F. Neri, C. Cotta, P. Moscato (Edt.), Handbook of Memetic Algorithms, içinde (s. 201-217). Berlin: Springer-Verlag, Berlin Heidelberg.
  • Zhang, H., Liu, B., 2009. A New Genetic Algorithm for Order-Picking of Irregular Warehouse. International Conference on Environmental Science and Information Application Technology, 1, 121-124. https://doi.org/10.1109/ESIAT.2009.131
  • Abbes, M., Belharet, K., Souissi, M., Mekki, H., & Poisson, G., 2023. Design of a Robotized Magnetic Platform for Targeted Drug Delivery in the Cochlea. IRBM, 44(1), 100728. https://doi.org/10.1016/j.irbm.2022.06.003
  • Al-Mdallal, Q. M., Syam, M. I., & Anwar, M. N., 2010. A collocation-shooting method for solving fractional boundary value problems. Communications in Nonlinear Science and Numerical Simulation, 15(12), 3814-3822. https://doi.org/10.1016/j.cnsns.2010.01.020
  • Zheng, B., Li, C. Y., Huang, S., Zhang, Z. L., Wu, Q. S., Pang, D. W., & Tang, H. W., 2022. Optical tweezers assisted analyzing and sorting of tumor cells tagged with fluorescence nanospheres in a microfluidic chip, Sensors and Actuators B: Chemical, Volume 368, 2022, 132173, ISSN 0925-4005, https://doi.org/10.1016/j.snb.2022.132173.
  • Ceylan, H., Giltinan, J., Kozielski, K., & Sitti, M., 2017. Mobile microrobots for bioengineering applications. Lab on a Chip, 17(10), 1705-1724. https://doi.org/10.1039/C7LC00064B
  • Fang, L., Vandewalle, S., & Meyers, J., 2023. An SQP-based multiple shooting algorithm for large-scale PDE-constrained optimal control problems. Journal of Computational Physics, 477, 111927. https://doi.org/10.1016/j.jcp.2023.111927
  • Ha, S. N., 2001. A nonlinear shooting method for two-point boundary value problems. Computers & Mathematics with Applications, 42(10-11), 1411-1420. https://doi.org/10.1016/S0898-1221(01)00250-4
  • He, C.-H., Amer, T. S., Tian, D., Abolila, A. F., & Galal, A. A., 2022. Controlling the kinematics of a spring-pendulum system using an energy harvesting device. Journal of Low Frequency Noise, Vibration and Active Control, 41(3), 1234-1257. https://doi.org/10.1177/14613484221077474
  • Jia, Y., Zhu, Z., Jing, X., Lin, J., & Lu, M., 2023. Fabrication and performance evaluation of magnetically driven double curved conical ribbon micro-helical robot. Materials & Design, 226, 111651. https://doi.org/10.1016/j.matdes.2023.111651 Koleoso, M., Feng, X., Xue, Y., Li, Q., Munshi, T., & Chen, X., 2020. Micro/nanoscale magnetic robots for biomedical applications. Materials Today Bio, 8, 100085. https://doi.org/10.1016/j.mtbio.2020.100085
  • Lu, Y., Li, L., Hu, N., Pan, Y., & Ren, C., 2015. Measurement Method of Magnetic Field for the Wire Suspended Micro-Pendulum Accelerometer. Sensors, 15(4), 8527-8539. https://doi.org/10.3390/s150408527 Magdanz, V., Khalil, I. S. M., Simmchen, J., Furtado, G. P., Mohanty, S., Gebauer, J., Xu, H., Klingner, A., Aziz, A., Medina-Sánchez, M., Schmidt, O. G., & Misra, S., 2020. IRONSperm: Sperm-templated soft magnetic microrobots. Science Advances, 6(28), eaba5855. https://doi.org/10.1126/sciadv.aba5855
  • Mashimo, T., & Oba, Y., 2022. Performance improvement of micro-ultrasonic motors using the thickness shear mode piezoelectric elements. Sensors and Actuators A: Physical, 335, 113347. https://doi.org/10.1016/j.sna.2021.113347
  • Morrison, D. D., Riley, J. D., & Zancanaro, J. F., 1962. Multiple shooting method for two-point boundary value problems. Communications of the ACM, 5(12), 613-614. https://doi.org/10.1145/355580.369128 Nana, B., Yamgoué, S. B., Tchitnga, R., & Woafo, P., 2017. Dynamics of a pendulum driven by a DC motor and magnetically controlled. Chaos, Solitons & Fractals, 104, 18-27. https://doi.org/10.1016/j.chaos.2017.07.027
  • Osborne, M. R., 1969. On shooting methods for boundary value problems. Journal of mathematical analysis and applications, 27(2), 417-433. Özbey, A. Uzal, E. Yıldız, H. Mutlu, A., 2014. Control of a Robot Arm Using Magnetic Forces. Numerical Methods for scientific Computations and Advanced applications., Bansko, Bulgaria.
  • Silva, F., Batista, J., Souza, D., Lima, A., Dos Reis, L., & Barbosa, A., 2023. Control and identification of parameters of a joint of a manipulator based on PID, PID 2-DOF, and least squares. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 45(6), 327. https://doi.org/10.1007/s40430-023-04251-5. Vo-Duy, T., & Ta, M. C., 2023. Fundamental design of electric motor control systems. Içinde Encyclopedia of Electrical and Electronic Power Engineering (ss. 428-453). Elsevier. https://doi.org/10.1016/B978-0-12-821204-2.00054-4
  • Yang, W., Wang, Z., Wang, X., Chen, Y., Ge, Z., & Yu, H., 2023. Bio-inspired propeller robot with controllable pitch driven by magnetic and optical coupling field. Sensors and Actuators B: Chemical, 382, 133509. https://doi.org/10.1016/j.snb.2023.133509
  • Yang, Y., Wang, H., 2013, Perspectives of nanotechnology in minimally invasive therapy of breast cancer, J. Healthc. Eng., 4 (1) (2013), pp. 67-86, 10.1260/2040-2295.4.1.67. https://doi.org/10.1260/2040-2295.4.1.67
  • Yildiz, H., Korkmaz Can, N., Ozguney, O. C., & Yagiz, N., 2020. Sliding mode control of a line following robot. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 42(11), 561. https://doi.org/10.1007/s40430-020-02645-3
  • Yilmaz, S., Toker, O., Arslan, N., & Sedef, H., 2012. Optimal in vitro realization of pulsatile coronary artery flow waveforms using closed-loop feedback algorithms with multiple flow control devices. Turkish Journal of Electrical Engineering and Computer Sciences, 20(6), 1006-1030. https://doi.org/10.3906/elk-1101-1024
There are 22 citations in total.

Details

Primary Language Turkish
Subjects Computer Software
Journal Section Araştırma Articlessi \ Research Articles
Authors

Hüseyin Yıldız 0000-0002-0575-3904

Publication Date March 25, 2024
Submission Date June 21, 2023
Acceptance Date January 26, 2024
Published in Issue Year 2024 Volume: 12 Issue: 1

Cite

APA Yıldız, H. (2024). KÜÇÜK ÖLÇEKLİ, TEK EKLEMLİ MANYETİK SARKAÇ MEKANİZMASININ BİLGİSAYAR DESTEKLİ BENZETİMİ VE PID KONTROLÜ. Mühendislik Bilimleri Ve Tasarım Dergisi, 12(1), 75-87. https://doi.org/10.21923/jesd.1318257