Research Article
BibTex RIS Cite

INVESTIGATION OF MECHANICAL AND FRACTURE BEHAVIOR OF NUTSHELL IN DIFFERENT SIZES PARTİCLE REİNFORCED PMMA COMPOSITES

Year 2024, Volume: 12 Issue: 4, 736 - 748, 25.12.2024
https://doi.org/10.21923/jesd.1392346

Abstract

The use of agricultural waste is becoming more widespread day by day due to increasing environmental sensitivity and bringing waste into the economy. The aim of this study is to investigate the usability of hazelnut shells, which are treated as waste, in the production of composite materials. The composite test material was produced with a filling of hazelnut shell particles with maximum dimensions of 50, 150, 250, 425 µm and weight ratios of 5%, 10%, 15%, 20%. After the thermal curing process, an initial notch was made on the samples with an initial notch ratio (Notch length / Sample width) a/W = 0.3. Mode I (crack opening) fracture behavior of these samples was determined with the help of three-point bending test. Critical Stress Intensity Factor was calculated with the help of the Initial Notch Depth method. Flexural modulus and bending stresses were determined using the three-point bending test, and impact strength values were determined using Standard notches. The composition and microstructure of hazelnut shell / polymethylmethacrylate composites were revealed by Fourer Transform Infrared Spectrophotometer and Scanning Electron Microscope measurements. According to the findings of the research, the mechanical properties of composites produced with 0-50 µm sized hazelnut shell particles are higher than composites produced with large-sized reinforcement.

Project Number

B.A.P ofisi (FEN-BAP-140411)

References

  • Adekoya, M.A., Liu, S., Oluyamo, S.S., Oyeleye, O.T., Ogundare, R.T., 2022. Influence of size classifications on the crystallinity index of Albizia gummifera cellulose, 8 (12) https://doi.org/10.1016/j.heliyon.2022.e12019
  • Andrew, J.J., Dhakal, H.N., 2022. Sustainable biobased composites for advanced applications: recent trends and future opportunities – A critical reviewComposites Part C: https://doi.org/10.1016/j.jcomc.2021.100220
  • Astm D5045-99 Standard Test Methods for Plane-Strain Fracture Toughness and Strain Energy ReleaseRate of Plastic MaterialsCopyright ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959, United States.
  • Atkins A.G., & Mai Y.W., 1988. Elastic and Plastic fracture Chichester, Ellis Horwood/John Wiley
  • Balart, J.F., Fombuena, V., Fenollar, O., Boronat, T., Sanchez-Nache , L., 2016. Processing and characterization of high environmental efficiency composites based on PLA and hazelnut shell flour (HSF) with biobased plasticizers derived from epoxidized linseed oil (ELO), Composites Part B, 86, 168-177. https://doi.org/10.1016/j.compositesb.2015.09.063
  • Bel, T., Arslan, C., Baydoğan, N., 2018. Production of PMMA/ Microsphere/ Montmorillonit nanocomposite, PMMA/ Microsphere/ Halloysite nanocomposite by atom transfer radical polymerization technique and comparison of mechanical properties, Journal of the Faculty of Engineering and Architecture of Gazi University, 18 (1). doi: 10.17341/gazimmfd.416525
  • Chuang, P.C., Chao, C.Y., Yang, M., Tsai, J.L., 2023. Investigating fracture toughness of graphene epoxy nanocomposites using single edge notched bending specimens, Journal of Mechanics , 39 , 105–112. https://doi.org/10.1093/jom/ufad007
  • Çöpür, Y., Güler, C., Taşcıoğlu, A. 2008. Incorporation of hazelnut shell and husk in MDF production, Short Communication, Bioresource Technology, 99, 7402–7406. doi:10.1016/j.biortech.2008.01.021
  • Frone, A.N., Panaitescu,D.M., Chiulan, I., Nicolae, C.A., Vuluga, Z., Vitelaru, C., Damian, C.M., 2016. The effect of cellulose nanofibers on the crystallinity and nanostructure of poly(lactic acid) composites, Journal of Material Science, 51,9771–9791. doi 10.1007/s10853-016-0212-1
  • Duan, G., Zhang, C., Li, A., Yang, X., Lu, L., Xin Wang, X., 2008. Preparation and Characterization of Mesoporous Zirconia Made by Using a Poly (methyl methacrylate) Template, Nanoscale Res Lett., 3, 118–122. doi 10.1007/s11671-008-9123-7
  • Gürü, M., Aruntaş Y., Bilici İ., Tüzün N., 2009. Processing of urea-formaldehyde based particleboard from hazelnut shell and improvement of its fire and water resistance, Fire Material, 33, 413-419. doi: 10.1002/fam.1011
  • İslam,A. 2018 Hazelnut culture in Turkey, Review, Akademik Ziraat Dergisi, 7(2),259-266. doi: http://dx.doi.org/10.29278/azd.476665
  • Joonobi, M., Harun, J., Tahir, P. M., Zaini, L. H., SaifulAzry, S., Makinejad, M.D., 2010. Characteristic of nanofibers extracted from kenaf core, BioResources, 5(4), 2556-2566.
  • Kaya, N., 2018. Cam elyaf ile katkılandırılmış tarımsal atıklar kullanılarak üretilen lif levhaların (MDF) mekanik ve fiziksel özelliklerinin incelenmesi. Gazi Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi, 33 (3),905-916. doi:http://dx.doi.org/10.17341/ gummfd.42013
  • Kuan, H.T.N.,Tan, M.Y., Shen, Y., Yahya, M.Y., 2021. Mechanical properties of particulate organic natural filler-reinforced polymer composite: A review, Composites and Advanced Material,30: 1–17. doi: 10.1177/26349833211007502
  • Kumar, R., Kumar, K., Sahoo, P., Bhowmik, S. 2014. Study of Mechanical Properties of Wood Dust Reinforced Epoxy Composite, Procedia Materials Science, 6, 551-556. doi: 10.1016/j.mspro.2014.07.070
  • Lauke, B., Fu, Y.S., 2013. Aspects of fracture toughness modelling of particle filled polymer composites, Composites Part B: Engineering, 45, (1)1569-1574. https://doi.org/10.1016/ j.compositesb. 2012.07.021
  • Lauke, B., 2008. On the effect of particle size on fracture toughness of polymer composites, Composites Science and Technology, 68 (15–16), 3365-3372. doi:10.1016/j.compscitech.2008.09.011
  • Meghana N. Thorat, M.N., Dastager, S.G., 2018. High yield production of cellulose by a Komagataei-bacterrhaeticus PG2 strain isolated from pomegranate as a new host, RSC Adv, 8, 29797–29805, 29797. doı: 10.1039/c8ra05295
  • Nam, S., French, A.D., Condon, B.D., Concha, M., 2016. Segal crystallinity index revisited by the simulation of X-ray diffraction patterns of cotton cellulose Iβ and cellulose II, Carbohydrate Polymers 135(4633):1-9. doı: 10.1016/j.carbpol.2015.08.035
  • Özveren, U., Duygu Bozdağ N, Şahin,S., Özdoğan S., 2012. TG-MS ve FTIR Kullanılarak Fındık Kabuğunun Gazlaştırılmasının İncelenmesi, Onuncu Ulusal Kimya Mühendisliği Kongresi, 3-6 Eylül 2012, Koç Üniversitesi.
  • Raju, G. U., & Kumarappa, S., 2011. Experimental study on mechanical properties of groundnut shell particle-reinforced epoxy composites. Journal of Reinforced Plastics and Composites, 30(12), 1029–1037. https://doi.org/10.1177/0731684411410761
  • Salasinska, K., Barczewski, M., Górny, R., Kloziński, A., 2018. Evaluation of highly filled epoxy composites modified with walnut shell waste filler, Polymer Bulletin, 75, 2511–2528. https://doi.org/10.1007/s00289-017-2163-3
  • Taşdemir, H.M., Şahin, A., Karabulut, A.F., Gürü, M., 2018. Investigation of the properties of composite material produced from mint fiber added waste palm kernel, Journal of the Faculty of Engineering and Architecture of Gazi University, https://doi.or./10.17341/gazimmfd.416504
  • Tazi,M., Erchiqui, F., Kaddami, F.H., Bouazara, M., Poaty, B., 2015. Evaluation of Mechanical Properties and Durability Performance of HDPE-Wood Composites, AIP Conference Proceedings 1664.
  • Thirupathi, S., Mallichetty, E., Gopalan, V., Shenbaga Velu Pitchumani, S.V., 2024. Areca Fiber Reinforced Bio-Materials: A Review on Processing, Properties and Advanced Optimization Technique, J. of Natural Fibers Volume 21, 2024 -Issue 1. https://doi.org/10.1080/15440478.2024.2357236
  • Trika, A., Dittmerb, J., Hassen, M.B., Arousa, M., Buloub, A., Gargouri, M., 2016. Spectroscopy Analyses of Hybrid Unsaturated Polyester Composite Reinforced by Alfa, Wool, and Thermo-Binder Fibres Polymer Science, 58:2, 255–264. doi: 10.1134/S0965545X16020188
  • Zhang, X., Sun, Z., & Hu, X., 2014. Low temperature fracture toughness of PMMA and crack-tip conditions under flat-tipped cylindrical indenter. Polymer Testing, 38, 57-63. https://doi.org/10.1016/j.polymertesting.2014.06.009

FARKLI BOYUTLARDA FINDIKKABUĞU PARTİKÜL TAKVİYELİ PMMA KOMPOZİTLERİN MEKANİK VE KIRILMA DAVRANIŞLARININ İNCELENMESİ.

Year 2024, Volume: 12 Issue: 4, 736 - 748, 25.12.2024
https://doi.org/10.21923/jesd.1392346

Abstract

Tarımsal atıkların kullanımı, çevresel hassasiyetlerin artması ve atıkların ekonomiye kazandırılması gibi duyarlılıklardan dolayı gün geçtikçe yaygınlaşmaktadır. Bu çalışmanın amacı atık olarak değerlendirilen fındıkkabuğunun kompozit malzeme üretiminde kullanılabilirliğini araştırmaktır.
Çalışmada, farklı boyutlara (maksimum: 50, 150, 250, 425 µm) ve ağırlıklara (5, 10, 15, 20 ) sahip fındıkkabuğu partikülleri dolgusu ile üretilen kompozit numunelere, ısıl kür işleminden sonra a/W= 0,3 olan başlangıç çentiği açılmıştır. Bu numunelerin mod I kırılma davranışları üç nokta eğme testi yardımı ile belirlenmiştir. Kritik Gerilme Şiddet Faktörü, Başlangıç Çentik Derinliği metodu yardımı ile hesaplanmıştır. Eğilme modülü ve eğilme gerilmeleri üç nokta eğme testi ile darbe dayanımı değerleri de Standart çentikler kullanılarak belirlenmiştir.
Fındıkkabuğu /polimetilmetakrilat kompozitlerin bileşimi ve mikro yapısı Fouirer Transform Infrared Spektrofotometre ve Scanning Electron Microscope çalışmaları ile ortaya konulmuştur. Araştırmanın bulgularına göre, 0-50 µm boyutlarında fındıkkabuğu partikülleri ile üretilen kompozitlerin mekanik özellikleri daha büyük boyutlu kompozitlerden daha yüksektir.

Supporting Institution

Giresun Üniversitesi B.A.P

Project Number

B.A.P ofisi (FEN-BAP-140411)

References

  • Adekoya, M.A., Liu, S., Oluyamo, S.S., Oyeleye, O.T., Ogundare, R.T., 2022. Influence of size classifications on the crystallinity index of Albizia gummifera cellulose, 8 (12) https://doi.org/10.1016/j.heliyon.2022.e12019
  • Andrew, J.J., Dhakal, H.N., 2022. Sustainable biobased composites for advanced applications: recent trends and future opportunities – A critical reviewComposites Part C: https://doi.org/10.1016/j.jcomc.2021.100220
  • Astm D5045-99 Standard Test Methods for Plane-Strain Fracture Toughness and Strain Energy ReleaseRate of Plastic MaterialsCopyright ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959, United States.
  • Atkins A.G., & Mai Y.W., 1988. Elastic and Plastic fracture Chichester, Ellis Horwood/John Wiley
  • Balart, J.F., Fombuena, V., Fenollar, O., Boronat, T., Sanchez-Nache , L., 2016. Processing and characterization of high environmental efficiency composites based on PLA and hazelnut shell flour (HSF) with biobased plasticizers derived from epoxidized linseed oil (ELO), Composites Part B, 86, 168-177. https://doi.org/10.1016/j.compositesb.2015.09.063
  • Bel, T., Arslan, C., Baydoğan, N., 2018. Production of PMMA/ Microsphere/ Montmorillonit nanocomposite, PMMA/ Microsphere/ Halloysite nanocomposite by atom transfer radical polymerization technique and comparison of mechanical properties, Journal of the Faculty of Engineering and Architecture of Gazi University, 18 (1). doi: 10.17341/gazimmfd.416525
  • Chuang, P.C., Chao, C.Y., Yang, M., Tsai, J.L., 2023. Investigating fracture toughness of graphene epoxy nanocomposites using single edge notched bending specimens, Journal of Mechanics , 39 , 105–112. https://doi.org/10.1093/jom/ufad007
  • Çöpür, Y., Güler, C., Taşcıoğlu, A. 2008. Incorporation of hazelnut shell and husk in MDF production, Short Communication, Bioresource Technology, 99, 7402–7406. doi:10.1016/j.biortech.2008.01.021
  • Frone, A.N., Panaitescu,D.M., Chiulan, I., Nicolae, C.A., Vuluga, Z., Vitelaru, C., Damian, C.M., 2016. The effect of cellulose nanofibers on the crystallinity and nanostructure of poly(lactic acid) composites, Journal of Material Science, 51,9771–9791. doi 10.1007/s10853-016-0212-1
  • Duan, G., Zhang, C., Li, A., Yang, X., Lu, L., Xin Wang, X., 2008. Preparation and Characterization of Mesoporous Zirconia Made by Using a Poly (methyl methacrylate) Template, Nanoscale Res Lett., 3, 118–122. doi 10.1007/s11671-008-9123-7
  • Gürü, M., Aruntaş Y., Bilici İ., Tüzün N., 2009. Processing of urea-formaldehyde based particleboard from hazelnut shell and improvement of its fire and water resistance, Fire Material, 33, 413-419. doi: 10.1002/fam.1011
  • İslam,A. 2018 Hazelnut culture in Turkey, Review, Akademik Ziraat Dergisi, 7(2),259-266. doi: http://dx.doi.org/10.29278/azd.476665
  • Joonobi, M., Harun, J., Tahir, P. M., Zaini, L. H., SaifulAzry, S., Makinejad, M.D., 2010. Characteristic of nanofibers extracted from kenaf core, BioResources, 5(4), 2556-2566.
  • Kaya, N., 2018. Cam elyaf ile katkılandırılmış tarımsal atıklar kullanılarak üretilen lif levhaların (MDF) mekanik ve fiziksel özelliklerinin incelenmesi. Gazi Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi, 33 (3),905-916. doi:http://dx.doi.org/10.17341/ gummfd.42013
  • Kuan, H.T.N.,Tan, M.Y., Shen, Y., Yahya, M.Y., 2021. Mechanical properties of particulate organic natural filler-reinforced polymer composite: A review, Composites and Advanced Material,30: 1–17. doi: 10.1177/26349833211007502
  • Kumar, R., Kumar, K., Sahoo, P., Bhowmik, S. 2014. Study of Mechanical Properties of Wood Dust Reinforced Epoxy Composite, Procedia Materials Science, 6, 551-556. doi: 10.1016/j.mspro.2014.07.070
  • Lauke, B., Fu, Y.S., 2013. Aspects of fracture toughness modelling of particle filled polymer composites, Composites Part B: Engineering, 45, (1)1569-1574. https://doi.org/10.1016/ j.compositesb. 2012.07.021
  • Lauke, B., 2008. On the effect of particle size on fracture toughness of polymer composites, Composites Science and Technology, 68 (15–16), 3365-3372. doi:10.1016/j.compscitech.2008.09.011
  • Meghana N. Thorat, M.N., Dastager, S.G., 2018. High yield production of cellulose by a Komagataei-bacterrhaeticus PG2 strain isolated from pomegranate as a new host, RSC Adv, 8, 29797–29805, 29797. doı: 10.1039/c8ra05295
  • Nam, S., French, A.D., Condon, B.D., Concha, M., 2016. Segal crystallinity index revisited by the simulation of X-ray diffraction patterns of cotton cellulose Iβ and cellulose II, Carbohydrate Polymers 135(4633):1-9. doı: 10.1016/j.carbpol.2015.08.035
  • Özveren, U., Duygu Bozdağ N, Şahin,S., Özdoğan S., 2012. TG-MS ve FTIR Kullanılarak Fındık Kabuğunun Gazlaştırılmasının İncelenmesi, Onuncu Ulusal Kimya Mühendisliği Kongresi, 3-6 Eylül 2012, Koç Üniversitesi.
  • Raju, G. U., & Kumarappa, S., 2011. Experimental study on mechanical properties of groundnut shell particle-reinforced epoxy composites. Journal of Reinforced Plastics and Composites, 30(12), 1029–1037. https://doi.org/10.1177/0731684411410761
  • Salasinska, K., Barczewski, M., Górny, R., Kloziński, A., 2018. Evaluation of highly filled epoxy composites modified with walnut shell waste filler, Polymer Bulletin, 75, 2511–2528. https://doi.org/10.1007/s00289-017-2163-3
  • Taşdemir, H.M., Şahin, A., Karabulut, A.F., Gürü, M., 2018. Investigation of the properties of composite material produced from mint fiber added waste palm kernel, Journal of the Faculty of Engineering and Architecture of Gazi University, https://doi.or./10.17341/gazimmfd.416504
  • Tazi,M., Erchiqui, F., Kaddami, F.H., Bouazara, M., Poaty, B., 2015. Evaluation of Mechanical Properties and Durability Performance of HDPE-Wood Composites, AIP Conference Proceedings 1664.
  • Thirupathi, S., Mallichetty, E., Gopalan, V., Shenbaga Velu Pitchumani, S.V., 2024. Areca Fiber Reinforced Bio-Materials: A Review on Processing, Properties and Advanced Optimization Technique, J. of Natural Fibers Volume 21, 2024 -Issue 1. https://doi.org/10.1080/15440478.2024.2357236
  • Trika, A., Dittmerb, J., Hassen, M.B., Arousa, M., Buloub, A., Gargouri, M., 2016. Spectroscopy Analyses of Hybrid Unsaturated Polyester Composite Reinforced by Alfa, Wool, and Thermo-Binder Fibres Polymer Science, 58:2, 255–264. doi: 10.1134/S0965545X16020188
  • Zhang, X., Sun, Z., & Hu, X., 2014. Low temperature fracture toughness of PMMA and crack-tip conditions under flat-tipped cylindrical indenter. Polymer Testing, 38, 57-63. https://doi.org/10.1016/j.polymertesting.2014.06.009
There are 28 citations in total.

Details

Primary Language Turkish
Subjects Materials Engineering (Other)
Journal Section Research Articles
Authors

Kenan Büyükkaya 0000-0002-8263-0756

Halil Demirer 0000-0001-7870-5797

Project Number B.A.P ofisi (FEN-BAP-140411)
Publication Date December 25, 2024
Submission Date November 17, 2023
Acceptance Date October 30, 2024
Published in Issue Year 2024 Volume: 12 Issue: 4

Cite

APA Büyükkaya, K., & Demirer, H. (2024). FARKLI BOYUTLARDA FINDIKKABUĞU PARTİKÜL TAKVİYELİ PMMA KOMPOZİTLERİN MEKANİK VE KIRILMA DAVRANIŞLARININ İNCELENMESİ. Mühendislik Bilimleri Ve Tasarım Dergisi, 12(4), 736-748. https://doi.org/10.21923/jesd.1392346