Research Article
BibTex RIS Cite

OTOMATİK PARKİNSON HASTALIĞI TEŞHİSİ: BİR ÖZELLİK SEÇİMİ YAKLAŞIMI

Year 2024, Volume: 12 Issue: 4, 724 - 735, 25.12.2024
https://doi.org/10.21923/jesd.1479779

Abstract

Parkinson hastalığı, insan sağlığını önemli ölçüde etkileyen nörodejeneratif bozukluklardan biridir. Hastalar, titreme, yürüme bozuklukları ve konuşma bozuklukları gibi çeşitli olumsuz etkiler yaşarlar. Hastalık ayrıca yürüme dengesizliğine, titremelere ve yazma becerilerini etkiler. Hastalığın tespiti üzerine yapılan çalışmalar genellikle konuşma analizine odaklanmaktadır. Ancak, Parkinson hastalığı motor yetenek kaybını kullanarak teşhis edilebilir. Bu çalışmada, İstanbul Üniversitesi Cerrahpaşa Tıp Fakültesi'nde kaydedilen bir veri seti incelenmektedir. Veriler, 15 sağlıklı denekten ve Parkinson hastalığı olan 75 denekten bir grafik tableti kullanılarak toplandı. Her denekten, sırasıyla statik spiral testi (SST) ve dinamik spiral testi (DST) olarak adlandırılan iki farklı koşul altında bir spiral çizmesi istenmiş ve çizimler X, Y ve Z eksenlerine hareket, Kavrama Açısı ve Basınç verilerine dönüştürülmüştür. Çalışma sırasında, SST ve DST koşullarının etkinliği dikkate alınmıştır. En iyi sınıflandırıcıyı belirlemek için çeşitli makine öğrenimi algoritmaları test edilmiştir. Özelliklerin etkisi, bir özellik elemesi süreci kullanılarak da dikkate alınmıştır. Sonuç olarak, Z eksenini ihmal ederek SST verileri ile Kernel Naive Bayes ağı kullanılarak %93,55'lik en iyi sınıflandırma performansı elde edilmiştir.

References

  • Abdullah, S. M., Abbas, T., Bashir, M. H., Khaja, I. A., Ahmad, M., Soliman, N. F., & El-Shafai, W., 2023. Deep transfer learning based parkinson’s disease detection using optimized feature selection. IEEE Access, 11, 3511-3524.
  • Alalayah, K. M., Senan, E. M., Atlam, H. F., Ahmed, I. A., & Shatnawi, H. S. A., 2023. Automatic and Early Detection of Parkinson’s Disease by Analyzing Acoustic Signals Using Classification Algorithms Based on Recursive Feature Elimination Method. Diagnostics, 13(11), 1924.
  • Ali, A. M., Salim, F., & Saeed, F., 2023. Parkinson’s disease detection using filter feature selection and a genetic algorithm with ensemble learning. Diagnostics, 13(17), 2816.
  • Amato, F., Borzì, L., Olmo, G., & Orozco-Arroyave, J. R., 2021. An algorithm for Parkinson’s disease speech classification based on isolated words analysis. Health Information Science and Systems, 9, 1-15.
  • Ayaz, Z., Naz, S., Khan, N. H., Razzak, I., & Imran, M., 2023. Automated methods for diagnosis of Parkinson’s disease and predicting severity level. Neural Computing and Applications, 35(20), 14499-14534.
  • Bolat, B.,Bolat Sert, S., 2010. Classification of Parkinson's disease by using voice measurements. International Journal of Reasoning-based Intelligent Systems, 2(3-4), 279-284.
  • Chawla, P. K., Nair, M. S., Malkhede, D. G., Patil, H. Y., Jindal, S. K., Chandra, A., & Gawas, M. A., 2024. Parkinson’s disease classification using nature inspired feature selection and recursive feature elimination. Multimedia Tools and Applications, 83(12), 35197-35220.
  • Cortes, C., Vapnik, V., 1995. Support-vector networks. Machine learning, 20, 273-297.
  • Çimen, S., Bolat, B., 2016. Diagnosis of Parkinson's disease by using ANN. In 2016 International Conference on Global Trends in Signal Processing, Information Computing and Communication (ICGTSPICC) (pp. 119-121). IEEE. Di Caro, G. (2019). SVM practice. Retrieved from https://web2.qatar.cmu.edu/~gdicaro/10315-Fall19/additional/SVM-practice.pdf
  • Elshewey, A. M., Shams, M. Y., El-Rashidy, N., Elhady, A. M., Shohieb, S. M., & Tarek, Z., 2023. Bayesian optimization with support vector machine model for parkinson disease classification. Sensors, 23(4), 2085.
  • Fadil, R., Huether, A., Brunnemer, R., Blaber, A. P., Lou, J. S., & Tavakolian, K., 2021. Early detection of parkinson’s disease using center of pressure data and machine learning. In 2021 43rd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC) (pp. 2433-2436). IEEE.
  • Göker, H., 2023, Automatic detection of Parkinson’s disease from power spectral density of electroencephalography (EEG) signals using deep learning model, Physical and Engineering Sciences in Medicine, 1-12,
  • Guatelli, R., Aubin, V., Mora, M., Naranjo-Torres, J., & Mora-Olivari, A., 2023. Detection of Parkinson’s disease based on spectrograms of voice recordings and Extreme Learning Machine random weight neural networks. Engineering Applications of Artificial Intelligence, 125, 106700.
  • Isenkul, M., Sakar, B., & Kursun, O., 2014. Improved spiral test using digitized graphics tablet for monitoring Parkinson’s disease. In The 2nd international conference on e-health and telemedicine (ICEHTM-2014) (Vol. 5, pp. 171-175).
  • Johri, A., & Tripathi, A., 2019. Parkinson disease detection using deep neural networks. In 2019 Twelfth international conference on contemporary computing (IC3) (pp. 1-4). IEEE.
  • Khatamino, P., Cantürk, İ., Özyılmaz, L., 2018. A deep learning-CNN based system for medical diagnosis: An application on Parkinson’s disease handwriting drawings. In 2018 6th International Conference on Control Engineering & Information Technology (CEIT) (pp. 1-6). IEEE.
  • Kumar, A., Sharma, N., & Anand, A., 2024. Evaluation of Machine Learning Techniques for Classification of Early Parkinson's Disease. In Intelligent Technologies and Parkinson’s Disease: Prediction and Diagnosis (pp. 305-320). IGI Global.
  • Kumar, K., & Ghosh, R., 2023. Parkinson’s disease diagnosis using recurrent neural network based deep learning model by analyzing online handwriting. Multimedia Tools and Applications, 1-29.
  • Mounika, P., & Rao, S. G., 2021. Machine Learning and Deep Learning Models for Diagnosis of Parkinson’s Disease: A Performance Analysis. In 2021 Fifth International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud)(I-SMAC) (pp. 381-388). IEEE.
  • Pearl, J., 1985. Bayesian netwcrks: A model cf self-activated memory for evidential reasoning. In Proceedings of the 7th conference of the Cognitive Science Society, University of California, Irvine, CA, USA (pp. 15-17).
  • Poewe, W,, Seppi, K,, Tanner, C, M,, Halliday, G, M,, Brundin, P,, Volkmann, J,, ,,, & Lang, A, E., 2017, Parkinson disease (Primer), Nature Reviews: Disease Primers, 3(1)
  • Saleh, S., Cherradi, B., El Gannour, O., Hamida, S., & Bouattane, O., 2024. Predicting patients with Parkinson's disease using Machine Learning and ensemble voting technique. Multimedia Tools and Applications, 83(11), 33207-33234.
  • Sandhiya, S., Rao, G. V. V., Prabhu, V., Mohanraj, K., & Azhagumurugan, R., 2022. Parkinson's Disease Prediction Using Machine Learning Algorithm. In 2022 International Conference on Power, Energy, Control and Transmission Systems (ICPECTS) (pp. 1-5). IEEE.
  • Sankineni, S., Saraswat, A., Suchetha, M., Aakur, S. N., Sehastrajit, S., & Dhas, D. E., 2023. An insight on recent advancements and future perspectives in detection techniques of Parkinson’s disease. Evolutionary Intelligence, 1-17.
  • Shafiq, S., Ahmed, S., Kaiser, M. S., Mahmud, M., Hossain, M. S., & Andersson, K., 2022. Comprehensive Analysis of Nature-Inspired Algorithms for Parkinson’s Disease Diagnosis. IEEE Access, 11, 1629-1653. Skodda, S.,2011. Aspects of speech rate and regularity in Parkinson's disease. Journal of the neurological sciences, 310(1-2), 231-236.
  • Soman, K., Nelson, C. A., Cerono, G., Goldman, S. M., Baranzini, S. E., & Brown, E. G., 2023. Early detection of Parkinson’s disease through enriching the electronic health record using a biomedical knowledge graph. Frontiers in Medicine, 10, 1081087.
  • Tandon, S., & Verma, S., 2022. Early Detection of Parkinson’s Disease Using Computer Vision. In Data Management, Analytics and Innovation: Proceedings of ICDMAI 2021, Volume 2 (pp. 199-208). Springer Singapore.
  • Tayal, A., 2018. Determination of Parkinson’s disease utilizing Machine Learning Methods. In 2018 International conference on advances in computing, communication control and networking (ICACCCN) (pp. 170-173). IEEE.
  • Thakur, M., Dhanalakshmi, S., Kuresan, H., Senthil, R., Narayanamoorthi, R., Lai, K. W., 2023. Automated restricted Boltzmann machine classifier for early diagnosis of Parkinson’s disease using digitized spiral drawings. Journal of Ambient Intelligence and Humanized Computing, 14(1), 175-189.
  • The MathWorks Inc., 2023. Classification Toolbox version: (R2023b), Natick, Massachusetts: The MathWorks Inc. https://www.mathworks.com
  • Tiwari, A. K., 2016. Machine learning based approaches for prediction of Parkinson’s disease. Mach Learn Appl, 3(2), 33-39.
  • Tsai, C. C., Chen, Y. L., Lu, C. S., Cheng, J. S., Weng, Y. H., Lin, S. H., ... & Wang, J. J., 2023. Diffusion tensor imaging for the differential diagnosis of Parkinsonism by machine learning. biomedical journal, 46(3), 100541.
  • Uebelacker, L. A., Epstein-Lubow, G., Lewis, T., Broughton, M. K., & Friedman, J. H., 2014. A survey of Parkinson's disease patients: most bothersome symptoms and coping preferences. Journal of Parkinson's disease, 4(4), 717-723.
  • Yuan, L., Liu, Y., & Feng, H. M., 2024. Parkinson disease prediction using machine learning-based features from speech signal. Service Oriented Computing and Applications, 18(1), 101-107.
  • Zhao, A., & Li, J., 2023. A significantly enhanced neural network for handwriting assessment in Parkinson’s disease detection. Multimedia Tools and Applications, 1-21.

AN AUTOMATED PARKINSON’S DISEASE DIAGNOSIS: A FEATURE SELECTION APPROACH

Year 2024, Volume: 12 Issue: 4, 724 - 735, 25.12.2024
https://doi.org/10.21923/jesd.1479779

Abstract

Parkinson’s disease is one of the neurodegenerative disorders that significantly affect human health. Patients experience various negative effects such as tremors, walking disorders, and impaired speech. The disease also causes instability in walking, leading to tremors, and affects their writing skills. Studies on detection of disease generally focus on speech analysis. However, PD can be diagnosed by exploiting the loss of motor ability. In this work, a data set which was recorded at Cerrahpasa Faculty of Medicine, Istanbul University is considered. The data were collected from 15 healthy subjects and 75 with Parkinson’s Disease.by a graphic tablet. Each subject asked to draw a spiral in two different conditions which are named as static spiral test (SST) and dynamic spiral test (DST) respectively, and the drawings transformed into X, Y and Z axis of movement, Grip Angle, and Pressure data. During the study, the effectiveness of SST and DST conditions are considered. Various machine learning algorithms have been tested to determine the best classifier. The effect of features was also considered by utilizing a feature elimination process. As a result, the best classification performance was obtained as 93.55% by using Kernel Naïve Bayes network with SST data, by omitting Z axis.

References

  • Abdullah, S. M., Abbas, T., Bashir, M. H., Khaja, I. A., Ahmad, M., Soliman, N. F., & El-Shafai, W., 2023. Deep transfer learning based parkinson’s disease detection using optimized feature selection. IEEE Access, 11, 3511-3524.
  • Alalayah, K. M., Senan, E. M., Atlam, H. F., Ahmed, I. A., & Shatnawi, H. S. A., 2023. Automatic and Early Detection of Parkinson’s Disease by Analyzing Acoustic Signals Using Classification Algorithms Based on Recursive Feature Elimination Method. Diagnostics, 13(11), 1924.
  • Ali, A. M., Salim, F., & Saeed, F., 2023. Parkinson’s disease detection using filter feature selection and a genetic algorithm with ensemble learning. Diagnostics, 13(17), 2816.
  • Amato, F., Borzì, L., Olmo, G., & Orozco-Arroyave, J. R., 2021. An algorithm for Parkinson’s disease speech classification based on isolated words analysis. Health Information Science and Systems, 9, 1-15.
  • Ayaz, Z., Naz, S., Khan, N. H., Razzak, I., & Imran, M., 2023. Automated methods for diagnosis of Parkinson’s disease and predicting severity level. Neural Computing and Applications, 35(20), 14499-14534.
  • Bolat, B.,Bolat Sert, S., 2010. Classification of Parkinson's disease by using voice measurements. International Journal of Reasoning-based Intelligent Systems, 2(3-4), 279-284.
  • Chawla, P. K., Nair, M. S., Malkhede, D. G., Patil, H. Y., Jindal, S. K., Chandra, A., & Gawas, M. A., 2024. Parkinson’s disease classification using nature inspired feature selection and recursive feature elimination. Multimedia Tools and Applications, 83(12), 35197-35220.
  • Cortes, C., Vapnik, V., 1995. Support-vector networks. Machine learning, 20, 273-297.
  • Çimen, S., Bolat, B., 2016. Diagnosis of Parkinson's disease by using ANN. In 2016 International Conference on Global Trends in Signal Processing, Information Computing and Communication (ICGTSPICC) (pp. 119-121). IEEE. Di Caro, G. (2019). SVM practice. Retrieved from https://web2.qatar.cmu.edu/~gdicaro/10315-Fall19/additional/SVM-practice.pdf
  • Elshewey, A. M., Shams, M. Y., El-Rashidy, N., Elhady, A. M., Shohieb, S. M., & Tarek, Z., 2023. Bayesian optimization with support vector machine model for parkinson disease classification. Sensors, 23(4), 2085.
  • Fadil, R., Huether, A., Brunnemer, R., Blaber, A. P., Lou, J. S., & Tavakolian, K., 2021. Early detection of parkinson’s disease using center of pressure data and machine learning. In 2021 43rd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC) (pp. 2433-2436). IEEE.
  • Göker, H., 2023, Automatic detection of Parkinson’s disease from power spectral density of electroencephalography (EEG) signals using deep learning model, Physical and Engineering Sciences in Medicine, 1-12,
  • Guatelli, R., Aubin, V., Mora, M., Naranjo-Torres, J., & Mora-Olivari, A., 2023. Detection of Parkinson’s disease based on spectrograms of voice recordings and Extreme Learning Machine random weight neural networks. Engineering Applications of Artificial Intelligence, 125, 106700.
  • Isenkul, M., Sakar, B., & Kursun, O., 2014. Improved spiral test using digitized graphics tablet for monitoring Parkinson’s disease. In The 2nd international conference on e-health and telemedicine (ICEHTM-2014) (Vol. 5, pp. 171-175).
  • Johri, A., & Tripathi, A., 2019. Parkinson disease detection using deep neural networks. In 2019 Twelfth international conference on contemporary computing (IC3) (pp. 1-4). IEEE.
  • Khatamino, P., Cantürk, İ., Özyılmaz, L., 2018. A deep learning-CNN based system for medical diagnosis: An application on Parkinson’s disease handwriting drawings. In 2018 6th International Conference on Control Engineering & Information Technology (CEIT) (pp. 1-6). IEEE.
  • Kumar, A., Sharma, N., & Anand, A., 2024. Evaluation of Machine Learning Techniques for Classification of Early Parkinson's Disease. In Intelligent Technologies and Parkinson’s Disease: Prediction and Diagnosis (pp. 305-320). IGI Global.
  • Kumar, K., & Ghosh, R., 2023. Parkinson’s disease diagnosis using recurrent neural network based deep learning model by analyzing online handwriting. Multimedia Tools and Applications, 1-29.
  • Mounika, P., & Rao, S. G., 2021. Machine Learning and Deep Learning Models for Diagnosis of Parkinson’s Disease: A Performance Analysis. In 2021 Fifth International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud)(I-SMAC) (pp. 381-388). IEEE.
  • Pearl, J., 1985. Bayesian netwcrks: A model cf self-activated memory for evidential reasoning. In Proceedings of the 7th conference of the Cognitive Science Society, University of California, Irvine, CA, USA (pp. 15-17).
  • Poewe, W,, Seppi, K,, Tanner, C, M,, Halliday, G, M,, Brundin, P,, Volkmann, J,, ,,, & Lang, A, E., 2017, Parkinson disease (Primer), Nature Reviews: Disease Primers, 3(1)
  • Saleh, S., Cherradi, B., El Gannour, O., Hamida, S., & Bouattane, O., 2024. Predicting patients with Parkinson's disease using Machine Learning and ensemble voting technique. Multimedia Tools and Applications, 83(11), 33207-33234.
  • Sandhiya, S., Rao, G. V. V., Prabhu, V., Mohanraj, K., & Azhagumurugan, R., 2022. Parkinson's Disease Prediction Using Machine Learning Algorithm. In 2022 International Conference on Power, Energy, Control and Transmission Systems (ICPECTS) (pp. 1-5). IEEE.
  • Sankineni, S., Saraswat, A., Suchetha, M., Aakur, S. N., Sehastrajit, S., & Dhas, D. E., 2023. An insight on recent advancements and future perspectives in detection techniques of Parkinson’s disease. Evolutionary Intelligence, 1-17.
  • Shafiq, S., Ahmed, S., Kaiser, M. S., Mahmud, M., Hossain, M. S., & Andersson, K., 2022. Comprehensive Analysis of Nature-Inspired Algorithms for Parkinson’s Disease Diagnosis. IEEE Access, 11, 1629-1653. Skodda, S.,2011. Aspects of speech rate and regularity in Parkinson's disease. Journal of the neurological sciences, 310(1-2), 231-236.
  • Soman, K., Nelson, C. A., Cerono, G., Goldman, S. M., Baranzini, S. E., & Brown, E. G., 2023. Early detection of Parkinson’s disease through enriching the electronic health record using a biomedical knowledge graph. Frontiers in Medicine, 10, 1081087.
  • Tandon, S., & Verma, S., 2022. Early Detection of Parkinson’s Disease Using Computer Vision. In Data Management, Analytics and Innovation: Proceedings of ICDMAI 2021, Volume 2 (pp. 199-208). Springer Singapore.
  • Tayal, A., 2018. Determination of Parkinson’s disease utilizing Machine Learning Methods. In 2018 International conference on advances in computing, communication control and networking (ICACCCN) (pp. 170-173). IEEE.
  • Thakur, M., Dhanalakshmi, S., Kuresan, H., Senthil, R., Narayanamoorthi, R., Lai, K. W., 2023. Automated restricted Boltzmann machine classifier for early diagnosis of Parkinson’s disease using digitized spiral drawings. Journal of Ambient Intelligence and Humanized Computing, 14(1), 175-189.
  • The MathWorks Inc., 2023. Classification Toolbox version: (R2023b), Natick, Massachusetts: The MathWorks Inc. https://www.mathworks.com
  • Tiwari, A. K., 2016. Machine learning based approaches for prediction of Parkinson’s disease. Mach Learn Appl, 3(2), 33-39.
  • Tsai, C. C., Chen, Y. L., Lu, C. S., Cheng, J. S., Weng, Y. H., Lin, S. H., ... & Wang, J. J., 2023. Diffusion tensor imaging for the differential diagnosis of Parkinsonism by machine learning. biomedical journal, 46(3), 100541.
  • Uebelacker, L. A., Epstein-Lubow, G., Lewis, T., Broughton, M. K., & Friedman, J. H., 2014. A survey of Parkinson's disease patients: most bothersome symptoms and coping preferences. Journal of Parkinson's disease, 4(4), 717-723.
  • Yuan, L., Liu, Y., & Feng, H. M., 2024. Parkinson disease prediction using machine learning-based features from speech signal. Service Oriented Computing and Applications, 18(1), 101-107.
  • Zhao, A., & Li, J., 2023. A significantly enhanced neural network for handwriting assessment in Parkinson’s disease detection. Multimedia Tools and Applications, 1-21.
There are 35 citations in total.

Details

Primary Language English
Subjects Biomedical Diagnosis, Signal Processing
Journal Section Research Articles
Authors

Sibel Çimen 0000-0003-3790-7362

Bülent Bolat 0000-0002-2468-8618

Publication Date December 25, 2024
Submission Date May 7, 2024
Acceptance Date October 26, 2024
Published in Issue Year 2024 Volume: 12 Issue: 4

Cite

APA Çimen, S., & Bolat, B. (2024). AN AUTOMATED PARKINSON’S DISEASE DIAGNOSIS: A FEATURE SELECTION APPROACH. Mühendislik Bilimleri Ve Tasarım Dergisi, 12(4), 724-735. https://doi.org/10.21923/jesd.1479779